题名

不同幾何思考層次的國中生判別正立方體透視圖邊長關係之研究

并列篇名

Study to Identify Length Relationships of a Cube in Perspective by Junior High School Students with Different Levels of Geometric Thinking

DOI

10.6278/tjme.201810_5(2).002

作者

李佳竹(Chia-Tsu Li);袁媛(Yuan Yuan)

关键词

正立方體 ; 國中 ; 幾何思考層次 ; cube ; junior high school ; levels of geometric thinking

期刊名称

臺灣數學教育期刊

卷期/出版年月

5卷2期(2018 / 10 / 01)

页次

19 - 38

内容语文

繁體中文

中文摘要

本研究主要在探討國中學生面對一個正立方體以平面表徵呈現時,其判別圖形中邊長關係的解題表現,及學生的解題表現是否與Van Hiele幾何思考層次有關。本研究以新北市某所國中146名二年級學生為研究對象,其中男生有78人,女生有68人,施以Van Hiele幾何思考層次測驗及立體圖形組成要素關係判別測驗。具體的研究發現有二:國中學生在視覺線索與答案一致的問題表現優於視覺線索與答案不一致的問題;Van Hiele幾何思考層次2及層次3的學生在測驗結果的表現顯著優於層次0及層次1的學生,特別是在視覺線索與答案不一致的問題上。 針對研究結果,本研究提出未來教學及研究上的建議。

英文摘要

This study explored students' performance in solving questions related to a cube represented in a plane and discussing its relationship to Van Hiele geometric thinking levels. In total, 146 eighth graders (78 boys and 68 girls) of a junior high school in New Taipei City were studied. A Van Hiele geometric thinking level test and three-dimensional graphic component relationship judgment test were administered to all students. The conclusions were as follows. (1) Junior high school students performed better in three-dimensional graphic component relationship judgment test problems in which visual cues and answers are consistent than in those in which they are inconsistent; (2) students with Van Hiele geometric thinking levels of 2 and 3 performed better at three-dimensional graphic component relationship judgment test than those with levels of 0 and 1. The differences were apparent in questions in which visual cues and answers were inconsistent. Based on the research results, suggestions for teaching and future study are provided.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. 王毓婕、陳光勳(2016)。運用幾何軟體Cabri 3D 與實體積木教具教學對國小二年級學童學習空間旋轉概念之影響。臺灣數學教育期刊,3(1),19-54。
    連結:
  2. Battista, M. T.(1999).Fifth graders' enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based classroom.Journal for Research in Mathematics Education,30(4),417-448.
  3. Fischbein, E.(1993).The theory of figure concepts.Structural Topology,24(2),139-162.
  4. Gutiérrez, A.(1992).Exploring the links between Van Hiele levels and 3-dimensional geometry.Structural Topology,18,31-48.
  5. Gutiérrez, A.,Pegg, J.,Lawrie, C.(2004).Characterization of students' reasoning and proof abilities in 3-dimensional geometry.Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education,Bergen, Norway:
  6. Hoffer, A.(1981).Geometry is more than proof.Mathematics Teacher,74(1),11-18.
  7. Kondo, Y.(2015).Characteristics of student's 3D geometrical reasoning in elementary school: Focus on the student's explanations.In pursuit of quality mathematics education for all: Proceedings of the 7th ICMI-East Asia Regional Conference on Mathematics Education,Cebu, Philippines:
  8. Lawrie, C.,Pegg, J.,Gutiérrez, A.(2000).Coding the nature of thinking displayed in responses on nets of solids.Proceedings of the 24th International Conference for the Psychology of Mathematics Education,Hiroshima, Japan:
  9. Parzysz, B.(1988)."Knowing" vs "seeing": Problems of the plane representation of space geometry figures.Educational Studies in Mathematics,19(1),79-92.
  10. Pittalis, M.,Mousoulides, N.,Christou, C.(2010).Students' 3D geometry thinking profiles.Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education,Lyon, France:
  11. Usiskin, Z.(1982).Van Hiele levels and achievement in secondary school geometry (Final Report of the cognitive development and achievement in secondary school geometry project).Chicago, IL:University of Chicago.
  12. Van Hiele, P. M.(1986).Structure and insight: A theory of mathematics education.Orlando, FL:Academic Press.
  13. 三民書局新辭典編纂委員會(2000)。新辭典。臺北=Taipei:三民=San Min。
  14. 王照明(1997)。圖學。臺北=Taipei:全華=Quan Hua。
  15. 王學武、蔡佳穎、陳宜均、賴蕙慈(2011)。應用Van Hiele 幾何思考層次理論於國小學童體積概念數位教材開發之研究。國民教育,51(6),90-99。
  16. 左台益、梁勇能(2001)。國二學生空間能力與Van Hiele 幾何思考層次相關性研究。師大學報:科學教育類,46(1&2),1-20。
  17. 洪明顯(2014)。臺中市=Taichung,私立臺中科技大學=National Taichung University of Science and Technology。
  18. 程柏豪(2006)。臺中市=Taichung,國立臺中教育大學=National Taichung University of Education。
  19. 鄭美玲、陳光勳(2015)。國小六年級學生表面積與體積「量的公式概念」調查之研究。國民教育,55(4),73-90。