题名

發展悅趣化數學文化教案以培養數量與代數素養之探究

并列篇名

An Exploratory Study on Developing Game-Based Mathematical Culture Lesson Plans for Cultivating Quantitative and Algebraic Literacy

DOI

10.6278/tjme.202104_8(1).003

作者

陳東賢(Tung-Shyan Chen)

关键词

代數教案 ; 悅趣化學習 ; 數量與代數素養 ; 數學文化 ; 數學魔術 ; lesson plans for algebra ; game-based learning ; quantitative and algebraic literacy ; mathematical culture ; mathematical magic

期刊名称

臺灣數學教育期刊

卷期/出版年月

8卷1期(2021 / 04 / 01)

页次

55 - 78

内容语文

繁體中文

中文摘要

本研究以十二年國民基本教育數學領域課程綱要為藍本,發展悅趣化數學文化教案以培養具備歸納推理能力的數量與代數素養。分別對臺灣國中生與高中生施以「撲克牌數學魔術」與「中國益智遊戲九連環」教案,並探究與反思所開發之悅趣化學習方式的兩個數量與代數素養教案的活動實施歷程。研究結果發現幾乎所有同學都認同所參與教學活動,活動有助於培養學生歸納推理能力與提升數量與代數素養。運用玩中學魔術對很多同學是很新鮮的經驗,藉由結合八年級數列單元的觀念,讓同學體會數學的妙用,確實增進學生對於等差數列單元概念理解與學習興趣,培養學生歸納推理的能力,進而運用數學規律,實際表演魔術。高中生可以藉由操作九連環遊戲培養觀察、探索、發現、分析與溝通能力,連結十年級指數、數列、級數與遞迴關係等單元,惟有些同學在數學表徵的敘述上出錯,研究顯示做更深入的抽象代數思維對十二年級高中生仍有其困難性。

英文摘要

This research was based on a 12-year compulsory education syllabus in the field of mathematics, and it integrated mathematical culture to develop game-based lesson plans to cultivate students' inductive reasoning ability for quantitative and algebraic literacy. The teaching plans for "Mathematical Card Magic" and "Chinese Ring of Chinese Puzzle Games" were given to Taiwanese junior and senior high school students, respectively. This research was a theoretical and reflexive study on the implementation of the two quantitative and algebraic teaching plans. The results of the study demonstrated that most students were receptive of the teaching activities. The activities helped to cultivate students' inductive reasoning ability and improve their quantitative and algebraic literacy. The use of mathematical card magic was a new experience for many junior high school students. Combining the concept of number sequences in Grade 8 can effectively arouse students' interest in learning and study, cultivate students' ability of inductive reasoning, and then apply the patterns of mathematics to perform magic tricks. High school students can develop observation, exploration, discovery, analysis, and communication skills by operating the Chinese ring. Teaching activities can link the concepts of logarithm, number sequences, and series and recursions in Grade 10. However, some students made mistakes in mathematical representation. It remains difficult for Grade 12 high school students to do more in-depth, abstract algebra thinking.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. 劉柏宏, Po-Hung(2016)。從數學與文化的關係探討數學文化素養之內涵─理論與案例分析。臺灣數學教育期刊,3(1),55-83。
    連結:
  2. Burton, L.(2009).The culture of mathematics and the mathematical culture.University science and mathematics education in transition,New York, NY:
  3. Cajori, F. (1928). A history of mathematical notations. La Salle, IL: Open Court.
  4. Chen, T.-S.(2019).Researching high school students’ strategies for solving the Chinese rings.Proceedings of the Eighth European Summer University on History and Epistemology in mathematics Education,Oslo, Norway:
  5. Fouze, A. Q.,Amit, M.(2018).Development of mathematical thinking through integration of ethnomathematic folklore game in math instruction.Eurasia Journal of Mathematics, Science and Technology Education,14(2),617-630.
  6. Garris, R.,Ahlers, R.,Driskell, J. E.(2002).Games, motivation, and learning: A research and practice model.Simulation & Gaming: An Interdisciplinary Journal of Theory, Practice and Research,33(4),441-467.
  7. Grouws, D. A.(Ed.)(1992).Handbook of research on mathematics teaching and learning.New York, NY:Macmillan.
  8. Haverty, L. A.,Koedinger, K. R.,Klahr, D.,Alibali, M. W.(2000).Solving inductive reasoning problems in mathematics: Not-so-trivial pursuit.Cognitive Science,24(2),249-298.
  9. Kline, M.(1953).Mathematics in western culture.New York, NY:Oxford University Press.
  10. Koirala, H. P.,Goodwin, P. M.(2000).Teaching algebra in the middle grades using mathmagic.Mathematics Teaching in the Middle School,5(9),562-566.
  11. Laborde, C.(1990).Language and mathematics.Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education,New York, NY:
  12. Lester, F. K., Jr.(Ed.)(2007).Second handbook of research on mathematics teaching and learning.Charlotte, NC:Information Age.
  13. Lim, K. H.(2018).Using math magic to reinforce algebraic concepts: An exploratory study.International Journal of Mathematical Education in Science and Technology,50(5),747-765.
  14. Molnár, G.,Greiff, S.,Csapó, B.(2013).Inductive reasoning, domain specific and complex problem solving: Relations and development.Thinking Skill and Creativity,9,35-45.
  15. Moyer, P.(2001).Making mathematics culturally relevant.Mathematics Teaching,176,3-5.
  16. Mullis, I. V. S.,Martin, M. O.,Foy, P.,Kelly, D. L.,Fishbein, B.(2020).TIMSS 2019 international results in mathematics and science.Chestnut Hill, MA:TIMSS & PIRLS International Study Center, Boston College.
  17. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:Author.
  18. Organisation for Economic Co-operation and Development. (2018, November). PISA 2021 mathematics framework (draft). OECD. https://pisa2021-maths.oecd.org/files/PISA%202021%20Mathematics%20Framework%20Draft.pdf
  19. Plass, J. L.,Homer, B. D.,Kinzer, C. K.(2015).Foundations of game-based learning.Educational Psychologist,50(4),258-283.
  20. Plass, J. L.,Perlin, K.,Nordlinger, J.(2010).The games for learning institute: Research on design patterns for effective educational games.Game Developers Conference,San Francisco, CA:
  21. Polya, G.(1954).Mathematics and plausible reasoning, Volume I: Induction and analogy in mathematics.Princeton, NJ:Princeton University Press.
  22. Schliemann, A. D.,Carraher, D. W.,Brizuela, B. M.(2007).Bringing out the algebraic character of arithmetic: From children’s ideas to classroom practice.Mahwah, NJ:Lawrence Erlbaum Associates.
  23. Tuma, D. T.(Ed.),Reif, F.(Ed.)(1980).Problem solving and education: Issues in teaching and research.Hillsdale, NJ:Erlbaum.
  24. Van Vo, D.,Csapó, B.(2020).Development of inductive reasoning in students across school grade levels.Thinking Skill and Creativity,37,100699.
  25. Wilder, R. L.(1950).The cultural basis of mathematics.Proceedings of the International Congress of Mathematicians,Providence, RI:
  26. Zazkis, R.,Liljedahl, P.(2002).Arithmetic sequence as a bridge between conceptual fields.Canadian Journal of Science, Mathematics and Technology Education,2(1),91-118.
  27. 中華人民共和國教育部=Ministry of Education of the People's Republic of China(2017).普通高中數學課程標準.北京=Beijing:人民教育出版社=People's Education Press.
  28. 中華人民共和國教育部=Ministry of Education of the People's Republic of China(2013).普通高中數學課程標準(實驗稿).北京=Beijing:人民教育出版社=People's Education Press.
  29. 方延明, Yen-Ming(2007).數學文化.北京=Beijing:清華大學出版社=Tsinghua University Press.
  30. 王憲昌, Hsien-Chang,劉鵬飛, Peng-Fei,耿鑫彪, Hsin-Piao(2010).數學文化概論.北京=Beijing:科學出版社=Science Press.
  31. 米山國藏, Kunizo,毛正中(譯), Zheng-Zhong(Trans.),吳素華(譯), Su-Hua(Trans.)(1986).數學的精神、思想與方法.成都=Chengdu:四川教育出版社=Sichuan Education Press.
  32. 李國偉, Ko-Wei,黃文璋, Wen-Jang,楊德清, Der-Ching,劉柏宏, Po-Hung(2013)。,新北市=Taipei:國家教育研究院=Ministry of Education。
  33. 李源順, Yuan-Shun(2013).數學這樣教:國小數學感教育.臺北=Taipei:五南=Wu-nan.
  34. 林壽福, Shou-Fu,吳如皓, Ju-Hao(2009).數學魔術:27 個數學概念奇蹟.臺北=Taipei:尖端=Sharp point.
  35. 侯惠澤, Huei-Tse(2016).遊戲式學習:啟動自學 × 喜樂協作,一起玩中學!.臺北=Taipei:親子天下=Education.Parenting Family Lifestyle.
  36. 俞昕, Hsin(2015)。摭談數學選修課“九連環”教學。中學數學雜誌,5,6-8。
  37. 洪萬生, Wann-Sheng(1996)。康熙皇帝與符號代數。HPM 通訊,2(1),1-3。
  38. 洪萬生, Wann-Sheng(1996)。數學史與代數學習。科學月刊,27(7),560-567。
  39. 唐慧榮, Hui-Jung(2019)。古典數學遊戲走進小學數學課堂——“九連環”課堂實踐。小學數學教師,6,19-22。
  40. 袁媛, Yuan(1993)。高雄市=Kaohsiung,國立高雄師範大學=National Kaohsiung Normal University。
  41. 高將, Chiang,崔志永, Chih-Yung(2012)。關於九連環入選初中活動課程的價值研究。中國科教創新導刊,29,64。
  42. 張海潮, Hai-Chao(2011)。從代數到算術——獻給國中小的老師。數學傳播,35(4),49-51。
  43. 張奠宙, Tien-Chou,梁紹君, Shao-Chun,金家梁, Chia-Liang(2003)。數學文化的一些新視角。數學教育學報,12(1),37-40。
  44. 張維忠, Wei-Chung,唐恒鈞, Heng-Chun(2008)。民族數學與數學課程改革。數學傳播,32(4),80-87。
  45. 教育部(2020 年 12 月 8 日)。臺灣參加國際數學與科學教育成就趨勢調查(TIMSS 2019)成果發表 。檢自https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=B822E38553C1D561【Taiwan Ministry of Education. (2018, December 8). The report of trends in international mathematics and science study 2019 for Taiwan. Retrieved from https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=B822E38553C1D561 (in Chinese)】
  46. 教育部(2018)。十二年國民基本教育國民中小學暨普通型高級中等學校課程綱要(數學領域)。臺北:作者。【Taiwan Ministry of Education. (2018). Curriculum guidelines of 12-year basic education: Elementary and junior high school and general senior high school (mathematics). Taipei: Author. (in Chinese)】
  47. 陳嘉皇, Chia-Huang(2007)。學童「圖卡覆蓋」代數推理歷程之研究—以三個個案為例。國民教育研究學報,19,79-107。
  48. 陳嘉皇, Chia-Huang(2006)。國小五年級學童代數推理策略應用之研究:以「圖卡覆蓋」解題情境歸納算式關係為例。屏東教育大學學報,25,381-412。
  49. 賓靜蓀(2020 年 12 月 11 日)。TIMSS 調查:台灣學生科學、數學成績全球排行前五,卻不愛學。親子天下。檢自 https://flipedu.parenting.com.tw/article/6309【Pin, Ching-Sun (2020, December 11). TIMSS survey: Taiwanese students rank among the top five in science and mathematics in the world, but they don’t like to learn. Taipei: Education.Parenting Family Lifestyle. (in Chinese)】
  50. 歐陽絳, Chiang(2008).數學方法溯源.大連=Dalian:大連理工大學出版社=Dalian University of Technology Press.
  51. 謝于婷、吳嘉文(2015 年 6 月 18 日)。猜對了嗎?“停車格數學題超難”【新聞影片】。中華電視公司。取自 https://news.cts.com.tw/cts/general/201506/201506181626784.html【Hsien, Yu-Ting, & Wu, Chia-Wen (2015, June 18). Did you guess right? "The mathematical problem of parking grid is super difficult" [news film]. Chinese Television System. Retrieved from https://news.cts.com.tw/cts/general/201506/201506181626784.html (in Chinese)】