题名

數學系學生對函數極限的錯誤認知與解題困境

并列篇名

Math Students' Misunderstandings and Obstacles in Learning Limits of Functions

DOI

10.6278/tjme.202110_8(2).002

作者

張子貴(Tzu-Kuei Chang)

关键词

函數極限 ; 微積分 ; 解題困境 ; 解題類型 ; 錯誤認知 ; limit of function ; calculus ; problem-solving obstacles ; problem-solving styles ; misunderstandings

期刊名称

臺灣數學教育期刊

卷期/出版年月

8卷2期(2021 / 10 / 01)

页次

43 - 76

内容语文

繁體中文

中文摘要

本研究的主要目的為探討數學系學生在微積分中對函數極限的錯誤認知與解題困境,以提供微積分教師在教學設計上的參考。本研究採用調查研究法,以自編的「函數極限測驗卷」為研究工具,對兩所國立大學修讀應用數學系微積分(一)的111位學生進行調查,分析學生的解題類型、錯誤認知與解題困境。研究結果發現:一、一半的學生無法正確描述函數極限的直觀意義與精確定義;二、學生未能理解函數極限的運算符號及使用極限計算法則的前提;三、學生無法釐清極限值、函數值與連續之間的關係;四、當函數含有根式、絕對值或有界的週期函數時,學生對計算函數的極限有困難。五、多數學生無法利用極限的精確定義證明線型函數的極限。最後依據研究結果,對微積分教學與研究提出一些建議。

英文摘要

This study investigated math students' misunderstandings and obstacles in learning limits of functions to enable calculus teachers to design their teaching plan accordingly. A self-designed test about the limits of functions was used as a tool in a survey to collect data from 111 students who were taking Calculus (I) at two public universities. The analysis of the students' problem-solving styles, misunderstandings, and difficulties pertaining to problem solving revealed the following findings: 1) Approximately half of the students could not correctly provide the intuitive and precise definitions of a limit; 2) the students could not understand the operational symbols of function limits and the basis for applying limit-related laws; 3) the students could not explain the relationship among limit, function value, and continuity; 4) the students experienced difficulties calculating the limit of a function when it contains radicals, absolute values, or bounded periodic functions; 5) most students could not apply the precise definition of a limit to prove the limit of a linear function. On the basis of these findings, we developed several recommendations for improving calculus teaching and research.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. 劉湘川, Hsiang-Chuan,白宗恩, Tsung-En,鄭俊彥, Chun-Yen,黃玉臺, Yu-Tai,謝俊逸, Chun-Yi,陳建憲, Jhien-Shien,劉育隆, Yu-Lung(2010)。微分基本公式之錯誤類型。測驗統計年刋,18(2),35-49。
    連結:
  2. Cottrill, J.,Dubinsky, E.,Nichols, D.,Schwingendorf, K.,Thomas, K.,Vidakovic, D.(1996).Understanding the limit concept: Beginning with a coordinated process scheme.Journal of Mathematical Behavior,15(2),167-192.
  3. Denbel, D. G.(2014).Students’ misconceptions of the limit concept in a first calculus course.Journal of Education and Practice,5(34),24-40.
  4. Fernández, E.(2004).The students’ take on the epsilon-delta definition of a limit.Problems, Resources Issues in Mathematics Undergraduate Studies,14(1),43-54.
  5. Fernández-Plaza, J. A.,Simpson, A.(2016).Three concepts or one? Students’ understanding of basic limit concepts.Educational Studies in Mathematics,93(3),315-332.
  6. Güçler, B.(2013).Examining the discourse on the limit concept in a beginning-level calculus classroom.Educational Studies in Mathematics,82(3),439-453.
  7. Juter, K.(2005).Limits of functions – How do students handle them?.Pythagoras,61,11-20.
  8. Keene, K. A.,Hall, W.,Duca, A.(2014).Sequence limits in calculus: Using design research and building on intuition to support instruction.ZDM Mathematics Education,46(4),561-574.
  9. Klymchuk, S.,Zverkova, T.,Gruenwald, N.,Sauerbier, G.(2010).University students’ difficulties in solving application problems in calculus: Student perspectives.Mathematics Education Research Journal,22(1),81-91.
  10. Muzangwa, J.,Chifamba, P.(2012).Analysis of errors and misconceptions in the learning of calculus by undergraduate students.Acta Didactica Napocensia,5(2),1-10.
  11. Odafe, V. U.(2012).Pushing the limit: A class project.Problems, Resources, and Issues in Mathematics Undergraduate Studies,22(3),214-227.
  12. Seah, E. K.(2005).Analysis of students’ difficulties in solving integration.The Mathematics Educator,9(1),39-59.
  13. Shipman, B. A.(2012).A comparative study of definitions on limit and continuity of functions.Problems, Resources Issues in Mathematics Undergraduate Studies,22(8),609-633.
  14. Stewart, J.(2016).Calculus.Belmont, CA:Brooks Cole.
  15. Swinyard, C.,Larsen, S.(2012).Coming to understand the formal definition of limit: Insights gained from engaging students in reinvention.Journal for Research in Mathematics Education,43(4),465-493.
  16. Szydlik, J. E.(2000).Mathematical beliefs and conceptual understanding of the limit of a function.Journal for Research in Mathematics Education,31(3),258-276.
  17. Tall, D.(1992).Students’ difficulties in calculus.Proceedings of Seventh International Congress on Mathematical Education,Québec, Canada:
  18. 教育部(2013)。普通高級中學課程綱要。臺北:作者。【Taiwan Ministry of Education. (2013). Curriculum Guidelines of General Senior High School. Taipei: Author. (in Chinese)】
  19. 華德林, De-Lin,邱進凌, Jin-Ling(2009)。極限問題錯解評析。重慶科技學院學報(自然科學版),11(3),173-175。
  20. 謝哲仁, Che-Jen,李慶志, Ching-Chih(2012)。數學極限概念之動態表徵設計。理工研究國際期刊,2(3),7-17。