英文摘要
|
The 108-year syllabus puts emphasis on enhancing students' abilities in solving real-life problems by applying the knowledge and skills learned in school. However, apart from PISA, there is no formal literacy-oriented assessment tools that can be used to assess students' mathematics literacy of in the third learning stage of elementary school. Therefore, in this study we use the 188 items developed by the National Academy for Educational Research and the relevant test results to investigate: (1) the difference in students' performances between the multiple-choice and non-multiple-choice questions, (2) the difference in students' performances of items which are developed with different situations, and (3) the types of mistakes students make when they try to answer. This study found that students' scoring rate of non-multiple-choice questions is 20% less than that of multiple-choice questions. For different situational items, the students' performances in the social and public realm, and in shopping and business activities are better, with the average scoring rates of more than 40%. Beside these two situational items, the average scoring rates in other situations are all less than 40%. Finally, when students try to answer non-multiple-choice questions but cannot get full scores, the common types of errors can be roughly divided into four types: errors in misconceptions, errors in intuitive inferences, errors in unit conversions, and errors in calculation processes.
|
参考文献
|
-
吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3),11–35。
連結:
-
張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27,175–200。
連結:
-
鍾恂恂(2016)。考察七年級生於不同類型的求解題的反應。科學教育月刊,389,20–33。
連結:
-
Bingölbali, E., & Bingölbali, F. (2021). An examination of open-ended mathematics questions' affordances. International Journal of Progressive Education, 17(4), 1–16.
連結:
-
Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive science, 4(4), 379–426.
連結:
-
Fujii, T. (2014). Misconceptions and alternative conceptions in mathematics education. In: S. Lerman (Ed.). Encyclopedia of mathematics education. Dordrecht, Netherlands: Springer.
連結:
-
OECD (2017). PISA 2015 Assessment and analytical framework: Science, reading, mathematic, financial literacy and collaborative problem solving (Revised ed.). Paris, France: OECD Publishing.
連結:
-
Sivan, E. (1986). Motivation in social constructivist theory. Educational Psychologist, 21(3), 209–233.
連結:
-
Spooner, M. (2002). Errors and misconceptions in maths at key stage 2: Working towards success in SATs. New York, NY: David Fulton Publishers.
連結:
-
Yamamoto, K., Shin, H. J., & Khorramdel, L. (2019). Introduction of multistage adaptive testing design in PISA 2018 (OECD Working Paper No. 209). Paris, France: OECD Publishing.
連結:
-
任宗浩(2018)。素養導向評量的界定與實踐。載於蔡清華(主編),課程協作與實踐第二輯(頁75–82)。臺北市:教育部中小學師資課程教學與評量協作中心。
-
吳正新、林裕峯、余陳宗、謝佳叡(2020)。108學年度國中素養導向評量分析報告:數學科。臺北市:臺北市政府教育局。
-
吳正新、林裕峯、吳添寶(2022)。素養好問題:素養導向評量研發指南。新北市:國家教育研究院。
-
李國偉、黃文璋、楊德清、劉柏宏(2013)。教育部提升國民素養實施方案—數學素養研究計畫結案報告。臺北市:教育部。
-
胡詩菁、鍾靜(2015)。數學課室中應用建構反應題進行形成性評量之研究。臺灣數學教師,36(2),26–48。
-
國家教育研究院(2020)。素養導向試題研發人才培訓計畫(第一期):數學科試題研發成果。新北市:作者。取自https://ptips.ntct.edu.tw/var/file/69/1069/img/173342938.pdf
-
國家教育研究院(2021)。素養導向試題研發人才培訓計畫(第二期):數學科試題研發成果。新北市:作者。取自https://ptips.ntct.edu.tw/var/file/69/1069/img/376480000A_1100252353_ATTACH1.pdf
-
張俊彥(主編)(2018)。國際數學與科學教育成就趨勢調查2015國家報告。臺北市:國立臺灣師範大學科學教育中心。
-
張鎮華(2017)。數學學科知識也是數學素養(數學素養系列之3)。高中數學學科中心電子報。取自https://ghresource.mt.ntnu.edu.tw/uploads/1644995378956mONmCFXd.pdf
-
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:作者。
-
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校:數學領域。臺北市:作者。
-
曾志朗、柯華葳、陳明蕾(2015)。104年度「十二年國民基本教育實施計畫提升國民素養實施方案」研究報告(NAER-104-12-B-2-03-00-2-03)。新北市:國家教育研究院。
-
游自達(2016)。數學素養之意涵與其變遷。教育脈動,5,1–18。
-
黃敏雄(2013)。十二年國教實施之前臺灣中小學生的數學表現:跨國、跨年級及跨屆比較。中央研究院電子報。取自http://newsletter.sinica.edu.tw/reviews/file/file/87/8744.pdf
-
臺灣PISA國家研究中心(主編)(2015)。臺灣PISA 2012結果報告。新北市:心理出版社。
-
謝豐瑞(2018)。2018中華民國數學年會特色展區工作坊暨論壇簡報內容:數學素養評量工作坊。臺北市:國立臺灣師範大學。
-
Ebel, R.L. and Frisbie, D.A. (1991). Essentials of educational measurement (5th ed.). Englewood Cliffs, NJ: Prentice Hall.
-
Fischbein, H. (1987). Intuition in science and mathematics: An educational approach. Dordrecht, Netherlands: Reidel.
-
Lohr, S. L. (2010). Sampling: design and analysis (2nd ed.). New York, NY: Chapman and Hall/CRC.
-
Mayer, R. E. (1985). Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123–145). Hillsdale, NJ: Lawrence Erlbaum.
-
Ministry of Education (2019). Mathematics Syllabuses: Secondary one to four. Singapore: Author.
-
National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
-
National Council of Teachers of Mathematics (2014). Principles to actions: ensuring mathematical success for all. Reston, VA: Author.
-
Ojose, B. (2015). Common misconceptions in mathematics: Strategies to correct them. Lanham, MD: University Press of America.
-
Patton, M. Q. (2001). Qualitative Research & Evaluation Methods (3rd ed.). Thousand Oaks, CA: SAGE Publications, Inc.
-
Ryan. J. & Williams, J. (2007). Children’s mathematics 4–15: learning from errors and misconceptions. Maidenhead, UK: Open University Press,
-
Tankersley, K. (2007). Tests that teach: using standardized tests to improve instruction. Alexandria, VA: ASCD.
|