题名

數學識讀文本教學對數學素養之影響-以負數單元為例

并列篇名

Effect of Mathematical Text-Based Education on Mathematics Literacy: A Case Study of Negative Number Teaching Units

DOI

10.6278/tjme.202310_10(2).002

作者

陳玉芬(Yuh-Fen Chen);趙子揚(Tzu-Yang Chao);單維彰(Wei-Chang Shann)

关键词

數學識讀文本 ; 準實驗法 ; 數學素養 ; mathematical text ; quasi-experiment ; mathematics literacy

期刊名称

臺灣數學教育期刊

卷期/出版年月

10卷2期(2023 / 10 / 01)

页次

27 - 54

内容语文

繁體中文;英文

中文摘要

本研究旨在以實驗法檢驗「負數識讀文本」的實施成效。研究以準實驗兩組前後測設計,在新北市某市立高中召募四個班級共91名七年級學生進入實驗組,另外兩班共45名同年級學生進入對照組。實驗組在每週5節數學課中,持續四週進行每週1節的數學識讀文本學習活動;對照組則是四週當中,維持每週5節使用一般教科書的正常教學活動。本研究自行發展的研究工具有:「負數識讀文本」、「知行識評量規準」,以及據此規準設計的負數素養「前測」與「後測」。研究得到二項主要結果。第一,實驗組在負數識讀文本學習之後,在前後測之負數素養表現具顯著差異,其中在「識能理解」由3.5%上升至25.9%,「錯誤理解」由11.8%下降至2.4%。第二,本研究將前測作為控制變項之情況下,藉由多變量共變異數分析,檢驗「知」、「行」及「識」後測之結果,顯示實驗組在「識」後測之平均數,顯著高於對照組;而在「知」與「行」方面,兩組則無顯著差異。本研究將針對教學實驗結果,對識讀文本在教學上之應用提出建議。

英文摘要

This study empirically examined the effectiveness of using mathematical texts as a means of enhancing student literacy regarding negative numbers. A quasi-experimental two-group pretest-posttest design was adopted to recruit students from a public senior high school in New Taipei City. Specifically, 91 seventh-grade students from four classes were assigned to the experimental group, and 45 seventh-grade students from two other classes were assigned to the control group. Over a course of 4 weeks, the experimental group attended 5 math sessions per week, with 1 of the sessions dedicated to reading mathematical texts. By contrast, the control group continued with their routine learning activities using standard textbooks throughout the 4 weeks. This study developed the mathematical texts studied by the experimental group, the zhi-xíng-shì (knowledge-capacity-comprehension) evaluation criteria, and a pretest and posttest based on these criteria. Accordingly, the following two main findings were obtained: First, after learning with the mathematical texts, the experimental group demonstrated significant differences between their pretest and posttest scores in terms of negative number literacy. Specifically, their knowledge comprehension increased from 3.5% to 25.9%, and the error occurrence decreased from 11.8% to 2.4%. Second, after the pretest scores were controlled for, a multivariate analysis of covariance was conducted to assess the posttest scores in the knowledge, capacity, and comprehension dimensions. The results revealed that the experimental group's mean score for the comprehension dimension was significantly higher than that of the control group. However, their mean scores for the other two dimensions differed nonsignificantly from those of the control group. According to the experimental findings, suggestions are provided for the application of the developed mathematical texts in teaching.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. 林芳玫, F.-M.,洪萬生, W.-S.(2009)。數學小說初探:以結構主義敘事分析比較兩本小說。科學教育學刊,17(6),531-549。
    連結:
  2. 袁媛, Y.,許錦芳, C.-F.(2007)。資訊融入教學對國中資源班數學低成就學生學習影響之個案研究。教育科學期刊,7(1),36-57。
    連結:
  3. 陳淑娟, S.-C(2013)。負數史與負數教學中的美感意涵。教育實踐與研究,26(2),133-159。
    連結:
  4. Altiparmak, K.,Özdoğan, E.(2010).A Study on the teaching of the concept of negative numbers.International Journal of Mathematical Education in Science and Technology,41(1),31-47.
  5. Baroody, A. J.,Ginsburg, H. P.(1986).The relationship between initial meaningful and mechanical knowledge of arithmetic.Conceptual and procedural knowledge: The case of mathematics
  6. Bofferding, L.(2014).Negative integer understanding: Characterizing first graders' mental models.Journal for Research in Mathematics Education,45(2),194-245.
  7. Dostal, H. M.,Robinson, R.(2018).Doing mathematics with purpose: Mathematical text types.The Clearing House: A Journal of Educational Strategies,91(1),21-28.
  8. Fuadiah, N. F.,Suryadi, D.,Turmudi, T.(2017).Some difficulties in understanding negative numbers faced by students: A qualitative study applied at secondary schools in Indonesia.International Education Studies,10(1),24-38.
  9. Gagatsis, A.,Alexandrou, M.(2022).A review of the research in teaching and learning the negative numbers: An “action research” concerning the application of the geometrical model of the number line. Didattica Della Matematica.Dalla Ricerca Alle Pratiche d’aula,2022(11),9-32.
  10. Hiebert, J.,Lefevre, P.(1986).Conceptual and procedural knowledge in mathematics: An introductory analysis.Conceptual and procedural knowledge: The case of mathematics
  11. Hoffer, W. W.(2020).Developing literate mathematicians: A guide for integrating language and literacy instruction into secondary mathematics.National Council of Teachers of Mathematics, Inc.
  12. Kilhamn, C.(2011).Making sense of negative numbers.Voices on learning and instruction in mathematics
  13. Kirshner, D.,Awtry, T.(2004).Visual Salience of Algebraic Transformations.Journal for Research in Mathematics Education,35(4),224-257.
  14. Lakoff、 G.,Johnson, M.,周世箴(譯), S.-C.(Trans.)(2006).我們賴以生存的譬喻.聯經出版社=Linking.
  15. Lakoff, G.,Núñez, R. E.(2000).Where mathematics comes from: How the embodied mind brings mathematics into being.Basic Books.
  16. Linchevski, L.,Livneh, D.(1999).Structure sense: The relationship between algebraic and numerical contexts.Educational Studies in Mathematics,40,173-196.
  17. Molina, M.,Castro, E.(2021).Third grade students’ use of relational thinking.Mathematics,9(2),187.
  18. National Council of Teachers of Mathematics(1989).Curriculum and evaluation standards for school mathematics.Author.
  19. Sfard, A.(1991).On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin.Educational Studies in Mathematics,22(1),1-36.
  20. Sfard, A.(2008).Thinking as communicating: Human development, the growth of discourses, and mathematizing.Cambridge University Press.
  21. Soto-Andrade, J.(2007).,未出版
  22. Vlassis, J.(2008).The role of mathematical symbols in the development of number conceptualization: The case of the minus sign.Philosophical Psychology,21(4),555-570.
  23. Vlassis, J.,Demonty, I.(2022).The role of algebraic thinking in dealing with negative numbers.ZDM-Mathematics Education,54(6),1243-1255.
  24. Wiggins、 G.,McTighe, J.,賴麗珍(譯), L.-C.(Trans.)(2014).重理解的課程設計.心理出版社=Psychological Publishing.
  25. 林保平, P.-P.(2005)。正負數的概念及其加減運算。科學教育月刊,277,10-22。
  26. 林福來, F.-L.,單維彰, W.-C.,李源順, Y.-S.,鄭章華, C.-H.(2013)。,國家教育研究院=National Academy for Educational Research。
  27. 洪有情(編), Y.-C.(Ed.)(2022).國中數學第一冊.康軒=Kst Education.
  28. 國立臺灣師範大學心理與教育測驗研究發展中心(2021)。十二年國教課綱國民中學素養導向標準本位評量。作者。[Research Center for Psychological and Educational Testing. (2021). Standard-based assessment of student achievement for elementary and junior high school students. Author. (in Chinese)] https://sbasa.rcpet.edu.tw/SBASA/documents/Math.pdf?20200805。
  29. 國家教育研究院(2014)。十二年國民基本教育課程發展指引。作者。[National Academy for Educational Research. (2014). Development guides for 12-year basic education curriculum. Author. (in Chinese)] https://ws.moe.edu.tw/001/Upload/23/relfile/8006/51083/c1f743ce-c5e2-43c6-8279-9cc1ae8b1352.pdf。
  30. 教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。作者。[Ministry of Education. (2018). Curriculum guidelines of 12-year basic education for elementary, junior high schools and general senior high schools -mathematics. Author. (in Chinese)] https://cirn.moe.edu.tw/Upload/file/27338/72246.pdf。
  31. 陳玉芬, Y.-F.,單維彰, W.-C.(2021)。符號語言學作為數學的教學進路初探─以負數的概念模型譬喻為例。臺灣數學教師,42(1),1-16。
  32. 單維彰, W.-C.(2019)。素養導向教科書的宏觀與微觀設計:以七年級數學為例。教育研究月刊,303,66-80。
  33. 單維彰, W.-C.(2018)。論知行識作為素養培育的課程架構—以數學為例。臺灣教育評論月刊,7(2),101-106。
  34. 歐用生, Y.-S.(1991)。內容分析法。教育研究法
  35. 潘怡勳, I.-H.(2015)。義守大學=I-Shou University。