英文摘要
|
The main objective of this paper is to compare and evaluate the performance of the Value-at-Risk methodologies, paying particular attention to models that can capture skewness, kurtosis, fat-tailed characteristics or time-varying volatility. We examine the probability density function of Mixture Normal, Historical Simulation, BRW and Kernel Estimation of the non-parametric models, and the time-varying volatility models including EWMA, HW and conditional Extreme Value Theory (Conditional-GEV and GPD). The backtesting procedures include failure rate, binominal test, conditional coverage test and loss function. In general, models that can capture time-varying volatility perform better.
|
参考文献
|
-
Alexander, C. O.,C. T. Leigh(1997).On the Covariance Matrics Used in Value-at-Risk Models.Journal of Derivatives,4,50-62.
-
Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometics,31,307-327.
-
Boudoukh, J.,M. Richardson,R. Whitelaw(1998).The Best of Both Worlds.Risk,11,64-67.
-
Butler, J. S.,B. Schachter(1998).Estimating Value-at-Risk with a Precision Measure by Combining Kernel Estimation with Historical Simulation.Review of Derivatives Research,1,371-390.
-
Byström, H.(2004).Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.International Review of Financial Analysis,13,133-152.
-
Christoffersen, P. F.(1998).Evaluating Interval Forecasts.International Economic Review,39,841-862.
-
Danielsson, J.,C. G. de Vries(2000).Value-at-Risk and Extreme Returns.Extremes and Integrated Risk Management, Risk Book,8,85-106.
-
Danielsson, J.,C. G. de Vries(1997).Tail Index and Quantile Estimation with Vary High Frequency Data.Journal of Empirical Finance,4,241-257.
-
Duffie, D.,J. Pan(1997).An Overview of Value-at-risk.Journal of Derivatives,Spring,7-49.
-
Engle, R. F.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.Econometica,50,987-1008.
-
Fisher, R.,L. Tippett(1928).Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample.Proceedings of the Cambridge Philosophical Society,24,180-190.
-
Gumbel, E.(1958).Statistic of Extremes.New York:Columbia University Press.
-
Hamilton, J.(1994).Time Series Analysis.Princeton University Press.
-
Hendricks, D.(1996).Evaluation of Value-at-Risk Models Using Historical Data.Economic Policy Review,April,36-69.
-
Hull, J.,A. White(1998).Value-al-Risk When Daily Changes in Market Variables are not Normally Distributed.Journal of Derivatives,3,9-19.
-
Hull, J.,A. White(1998).Incorporating Volatility Updating the Historical Simulation Method for Value-at-risk.Journal of Risk,11,9-20.
-
Kupiec, P.(1995).Techniques for Verifying the Accuracy of Risk Measurement Models.Journal of Derivatives,3,73-84.
-
Longin, F.M.(1996).From Value-at-Risk to Stress Testing: the Extreme Value Approach.Journal of Banking & Financ,24,1097-1130.
-
Lopez, J.(1999).Methods for Evaluating Value-at-Risk Estimates.Economic Review,12,3-17.
-
McNeil, A.,R. Frey(2000).Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: an Extreme Value Approach.Journal of Empirical Finance,56,271-300.
-
P. Morgan(1996).Risk Metrics Technical Document.New York:
-
Sheather, S. J.,J. S. Marron(1990).Kernel Quantile Estimatiors.Journal of the American Statistical Association,85,410-416.
-
Silvapulle, P.,P. Granger(2001).Large Returns, Conditional Correlation and Portfolio Diversification: A Value-at-Risk Approach.Quantitative Finance,58,542-551.
-
Silverman, B. W.(1986).Density Estimation for Statistics and Data Analysis.London:Chapman and Hall.
-
Venkataraman S.(1997).Value at Risk for a Mixture of Normal Distributions: the Use of Quasi-Bayesian Estimation Techniques.Economic Perspectives.
-
Zangari, P.(1996).Risk Metrics Monitor.New York:
-
李進生、謝文良、林允永、蔣炤坪、陳達新、盧陽正(2001)。風險管理-風險值(VaR)理論與應用。台北:清蔚科技公司。
-
高志明(1999)。碩士論文(碩士論文)。銘傳大學金融系。
-
莊益源、林文昌、徐嘉彬、邱勝珍(2003)。靜態與動態風險值模型績效之比較。證券市場發展季刊,15(4),107-159。
-
魏志安(2002)。碩士論文(碩士論文)。中正大學數學系。
|