题名

估計並檢定短期利率波動性:確定抑或隨機?

并列篇名

Stochastic or Deterministic Volatilities? An Examination of Taiwan's Short-Term Interest Rate

DOI

10.30003/JRM.200511.0001

作者

李政峰(Cheng-Feng Lee);連春紅(Chun-Hung Lien);欉清全(Ching-Chuan Tsong);郭炳伸(Biing-Shen Kuo)

关键词

水準模型 ; GARCH模型 ; 隨機波動模型 ; 狀態轉換模型 ; Level Model ; GARCH Model ; Stochastic Volatility Model ; Regime Switching Model

期刊名称

風險管理學報

卷期/出版年月

7卷3期(2005 / 11 / 01)

页次

207 - 236

内容语文

繁體中文

中文摘要

短期利率在財務理論與實證上佔有相當重要的地位,由於許多金融商品的訂價與短期利率有關,利率變動會影響金融商品的價格行為,明瞭短期利率的動態行為有助於控管金融商品的價格風險。然而,實證上關於利率波動性的設定方式,至今仍未有定論。本文使用台灣、美國與日本的利率資料,估計並檢定三大類利率波動模型,分別為確定的波動模型、隨機的波動模型與狀態轉換的波動模型,希冀由實證資料決定最適合的型式。實證結果顯示,均數復歸的現象以台灣資料較為明顯;而水準效果普遍存在於三國的資料中。以模型而言,GARCH水準模型較適合台灣的資料,美國與日本的資料則適合隨機波動水準(SV-L)模型。

英文摘要

Both asset pricing and risk management entails the information of the dynamic behavior of short-term interests. The short-term interest rates are featured by persistent and massive volatility. The paper inquires how the realizations on short-term interest rates from Taiwan, United States, and Japan can be best described empirically. Various popular volatility specifications are estimated and tested. Our empirical findings reveal that the mean reversion is an important characteristic for the interest rates from Taiwan, while the level effects are found to be common to all the data of three countries. Overall, the GARCH-L model well fits to Taiwan's data, and the SV-L model to US and Japan counterpart.

主题分类 社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. Ball, C. A.,W. N. Torous(1999).The Stochastic Volatility of Short Term Interest Rates: Some International Evidence.Journal of Finance,56,2339-2359.
  2. Bollerslev, T.,Wooldridge, J.M.(1992).Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time-Varying Covariances.Econometric Reviews,11,143-172.
  3. Brenner, R.,Harjes, R. H.,K. F. Kroner(1996).Another Look at Models of the Short-Term Interest Rate.Journal of Financial and Quantitative Analysis,31,85-107.
  4. Chan, K. C.,Karolyi, G. A.,Longstaff, F. A.,Sanders, A. B.(1992).An Empirical Comparison of Alternative Models of the Short-Term Interest Rate.Journal of Finance,47,1209-1227.
  5. Cox, J. C.,Ingersoll, J. E.,Ross, S. A.(1985).A Theory of the Term Structure of Interest Rates.Econometrica,53,385-407.
  6. Duffie, G.(1993).Working Paper of Federal Reserve BoardWorking Paper of Federal Reserve Board,Washington D.C.:.
  7. Gray, S. F.(1996).Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process.Journal of Financial Economics,42,27-42.
  8. Hamilton, J. D.(1989).A New Approach to the Economics Analysis of Non-Stationary Time Series and the Business Cycle.Econometrica,57,357-384.
  9. Hansen, B. E(1996).Erratum: The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP.Journal of Applied Econometrics,11(2),195-198.
  10. Harvey, A.,Ruiz, E.,N. Shephard(1994).Multivariate Stochastic Variance Models.Review of Economic Studies,61,247-264.
  11. Kim, C. J.(1994).Dynamic Linear Models with Markov-Switching.Journal of Economics,60,1-22.
  12. Merton, R.(1973).Rational Theory of Option Pricing.Bell Journal of Economics and Management Science,4,141-183.
  13. Sandman, G.,Koopman, S.(1998).Estimation of stochastic volatility models via Monte Carlo maximum likelihood.Journal of Econometrics,67,271-301.
  14. Smith D. R.(2002).Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates.Journal of Business and Economic Statistics,20,83-197.
  15. Vuong, Q.H.(1989).Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses.Econometrica,57,307-333.