题名

最適資產配置問題:考慮資產流動性

并列篇名

Optimal Asset Allocation under the Liquidity Constraint

作者

張士傑(Shih-Chieh Bill Chang);杜昌燁(Chang-ye Tu)

关键词

最適資產配置問題 ; Hamilton-Jacobi-Bellman(HJB)方程式 ; 資產流動性 ; 交易成本 ; optimal asset allocation problem ; liquidity ; transaction cost ; Hamilton-Jacobi-Bellman (HJB) equation

期刊名称

風險管理學報

卷期/出版年月

20卷2期(2018 / 12 / 01)

页次

85 - 105

内容语文

繁體中文

中文摘要

本文研究考慮資產流動性與交易成本的最適資產配置問題:給定由高流動性、低報酬與低流動性、高報酬兩種資產組成並存在資產互轉交易成本之市場,資產有下界且保費收入滿足雙態Poisson隨機過程之條件下,藉由數值求解相伴的Hamilton-Jacobi-Bellman(HJB)方程式獲得不同保費收入與各資產規模水平之最適分紅與提存規則。

英文摘要

We investigate the optimal asset allocation problem under the consideration of liquidity and transaction costs. Given the portfolio endowed with a liquid asset, an illquid one, and an exdogenous income process which obeys the two-state Poisson distribution, the optimal consumption and deposit rule is obtained by imposing the transcation cost mechanism and the asset value constraints and solving the corresponding HJB equation numerically.

主题分类 社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. Chang, S. C.,Li, Y. F.(2004).Optimal portfolio decisions in pension fund management.Journal of Management,21,279-290.
    連結:
  2. Bardi, M.,Capuzzo-Dolcetta, I.(1997).Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations.Boston:Birkhäuser.
  3. Barles, G.,Daher, C.,Romano, M.(1995).Convergence of numerical schemes for parabolic equations arising in finance theory.Mathematical Models and Methods in Applied Sciences,5,125-143.
  4. Barles, G.,Souganidis, P. E.(1991).Convergence of approximation schemes for fully nonlinear second order equations.Asymptotic Analysis,4,271-283.
  5. Chang, S. C.,Tsai, C. H.,Hung, L. C.(2005).Incorporating foreign equities in the optimal asset allocation of an insurer with the consideration for background risks: Model and numerical illustrations.Asia-Pacific Journal of Risk and Insurance,1,1-22.
  6. Chang, S. C.,Tsai, C. H.,Tien, C. J.,Tu, C. Y.(2002).Dynamic funding and investment strategy for defined benefit pension schemes: A model incorporating asset-liability matching criteria.Journal of Actuarial Practice,10,131-154.
  7. Crandall, M. G.(1997).Viscosity solutions: A primer.Viscosity Solutions and Applications,Berlin:
  8. Crandall, M.,Ishii, H.,Lions, P.L.(1992).User’s guide to viscosity solutions of second order partial differential equations.Bulletin of the American Mathematical Society,27,1-67.
  9. Delong, Ł.(2019).Optimal investment for insurance company with exponential utility and wealthdependent risk aversion coefficient.Mathematical Methods of Operations Research,89,73-113.
  10. Dixit, A. N.,Pindyck, R. S.(1994).Investment Under Uncertainty.Princeton, N. J.:Princeton University Press.
  11. Fleming, W.,Soner, H.M.(2006).Controlled Markov Processes and Viscosity Solutions.Berlin:Springer-Verlag.
  12. He, L.,Liang, Z. X.(2015).Optimal asset allocation and benefit outgo policies of dc pension plan with compulsory conversion claims.Insurance: Mathematics and Economics,61,227-234.
  13. Hipp, C.(2004).Stochastic control with application in insurance.Stochastic Methods in Finance: Lectures given at the C.I.M.E.-E.M.S. Summer School Held in Bressanone/Brixen, Italy, July 6-12, 2003,Berlin:
  14. Hipp, C.,Plum, M.(2000).Optimal investment for insurers.Insurance: Mathematics and Economics,27,215-228.
  15. Hipp, C.,Plum, M.(2003).Optimal investment for investors with state dependent income, and for insurers.Finance and Stochastics,7,299-321.
  16. Huang, H. C.(2005).Optimal multiperiod asset allocation matching assets to liabilities in a discrete model.The Journal of Risk and Insurance,77,451-472.
  17. Huang, H.C.,Lee, Y.T.(2010).Optimal asset allocation for a general portfolio of life insurance policies.Insurance: Mathematics and Economics,46,271-280.
  18. Hwang, Y.W.,Chang, S.C.,Cai, H.C.(2014).Downside risk control in continuous time portfolio management.Asia-Pacific Journal of Financial Studies,42,913-938.
  19. Kaplan, G.,Moll, B.,Violante, G.L.(2018).Monetary policy according to HANK.American Economic Review,108,697-743.
  20. Kaplan, G.,Violante, G.L.(2014).A model of the consumption response to fiscal stimulus payments.Econometrica,82,1199-1239.
  21. Kushner, H.,Dupuis, P.(2001).Numerical Methods for Stochastic Control Problems in Continuous Time.Berlin:Springer-Verlag.
  22. Sethi, S.P.(2019).Optimal Control Theory: Applications to Management Science and Economics.Cham:Springer-Verlag.
  23. Stokey, N.(2009).The Economics of Inaction: Stochastic Control Models with Fixed Cost.Princeton, N. J.:Princeton University Press.
  24. Touzi, N.(2013).Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE.New York:Springer-Verlag.
  25. Yang, H.L.,Zhang, L.H.(2005).Optimal investment for insurer with jump-diffusion risk process.Insurance: Mathematics and Economics,37,615-634.
  26. Yong, J.M.,Zhou, X.Y.(1999).Stochastic Controls: Hamilton Systems and HJB Equations.Berlin:Springer-Verlag.