题名

手機用硬式方型鋰離子電池熱失控特性研究

并列篇名

Study on the Thermal Runaway of Hard Prismatic lithium-ion Batteries Used in Smart Phones

作者

杜逸興(Yih-Shing Duh);林凱旋(Kai Hsuan Lin);高振山(Chen-Shan Kao)

关键词

硬式方型鋰離子電池 ; 熱失控 ; 密閉測試 ; 自加速放熱 ; 智慧型手機 ; Hard prismatic lithium-ion battery ; Thermal runaway ; Confinement test ; Self-heat rate ; Smart phone

期刊名称

勞動及職業安全衛生研究季刊

卷期/出版年月

26卷3期(2018 / 09 / 15)

页次

151 - 160

内容语文

繁體中文

中文摘要

本研究利用密閉測試儀將智慧型手機用硬式方型鋰離子電池,充電至飽電狀態下加熱至過熱狀況,使鋰離子電池產生熱失控。使用蘋果的iPhone 5, iPhone 6, Samsung Note 3, Samsung S5四款手機用硬式方型鋰離子電池。失控最高溫度均超過電解液成份有機碳酸酯的自燃溫度(auto-ignition temperature, AIT)。Samsung S5的電池放熱起始溫度最低約在117˚C。四種電池的 最大升溫速率介於4,422至11,860˚Cmin^(-1)之間。Samsung Note 3的硬式方型鋰離子電池熱失控時表現出最嚴重的熱危害,最高溫度與最大升溫速率高達675.6˚C and 11,860.0˚Cmin^(-1)。

英文摘要

In this study, we demonstrate firstly the application of the confinement test to track the thermal runaway in hard prismatic lithium-ion batteries used in smart phones. Four kinds of hard prismatic lithium-ion batteries used in iPhone 5, iPhone 6, Samsung Note 3, and Samsung S5 at full-charged state have been studied. All the maximum temperatures within the batteries under thermal runaway exceed the auto-ignition temperature (AIT) of organic carbonates. Lithium-ion battery used in Samsung S5 shall carry the most unstable feature with an exothermic onset temperature as low as 117˚C. Maximum self-heat rates are determined to be in the value from 2,736 to 11,860˚Cmin^(-1). The battery used in Samsung Note 3 displays the worst case scenario by possessing the maximum temperature and maximum self-heat rate reach the extremity of 675.6˚C and 11,860.0˚Cmin^(-1).

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
工程學 > 市政與環境工程
参考文献
  1. ASTM: E476-87. Standard Test Method for Thermal Instability of Confined Condensed Phase Systems (Confinement Test).
  2. Baba, Y,Okada, S,Yamaki, J(2002).Thermal stability of LixCoO2 cathode for lithium ion battery.Solid State Ionics,148,311-16.
  3. Bak, SM,Hu, E,Zhou, Y,Yu, X,Senanayake, SD,Cho, SJ(2014).Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy.Applied Materials & Interfaces,6,22594-601.
  4. CRC(2002).CRC. Handbook of Chemistry and Physics.CRC.
  5. Duh, YS,Chen, YL,Kao, CS(2017).Thermal stability of ethylene carbonate reacted with delithiated cathode materials in lithium-ion batteries.Journal of Thermal Analysis and Calorimetry,127,995-1007.
  6. Duh, YS,Lee, CY,Chen, YL,Kao, CS(2016).Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC).Thermochimi Acta,642,88-94.
  7. Duh, YS,Tsai, MT,Kao, CS(2017).Thermal runaway on 18650 lithium-ion batteries containing cathode materials with or without the coating of self-terminated oligomers with hyperbranched architecture (STOBA) used in electric vehicles.Journal of Thermal Analysis and Calorimetry,129,1935-48.
  8. Duh, YS,Tsai, MT,Kao, CS(2017).Characeterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle.Journal of Thermal Analysis and Calorimetry,127,983-93.
  9. Exponent(2017).Exponent. SAMSUNG Recall Support Note7 Investigation Root Cause Analysis. Exponent; 23 January 2017..
  10. Finegan, DP,Scheel, M,Robinson, JB,Tjaden, B,Hunt, I,Mason, TJ(2015).In-operando high-speed tomography of lithium-ion batteries during thermal runaway.Nature Communications,6,7924-33.
  11. Furushima, Y,Yanagisawa, C,Nakagawa, T,Aoki, Y,Muraki, N(2011).Thermal stability and kinetics of delithiated LixCoO2.Journal of Power Sources,196,2260-63.
  12. Golubkov, AW,Fuchs, D,Wagner, J,Wiltsche, H,Stangl, C,Fauler, G(2014).Thermalrunaway experiments on consumer Liion batteries with metal-oxide and olivinetype cathodes.Royal Society of Chemistry Advances,4,3633-42.
  13. Hsieh, TY,Duh, YS,Kao, CS(2014).Evaluation of thermal hazard for commercial 14500 lithium-ion batteries.Journal of Thermal Analysis and Calorimetry,116,1491-95.
  14. Hsu, JM,Su, MS,Huang, CY,Duh, YS(2012).Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO.Journal of Hazardous Materials,217-18,19-28.
  15. Ishikawa, H,Mendoza, O,Sone, Y,Umeda, M(2012).Study of thermal deterioration of lithiumion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method.Journal of Power Source,198,236-42.
  16. Larsson, F,Mellander, BE(2014).Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells.J. Electrochem. Soc,A1611-17.
  17. Liu, X,Wu, Z,Stoliarov, SI,Denlinger, M,Masias, A,Snyder, K(2016).Heat release during thermally-induced failure of a lithium-ion battery: Impact of cathode decomposition.Fire Safety Journal,85,10-22.
  18. MacNeil, DD,Dahn, JR(2001).The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2.J. Electrochem. Soc,148,1205-10.
  19. Röder, P,Stiaszny, B,Ziegler, JC,Baba, N,Lagaly, P,Wiemhofer, HD(2014).The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell.Journal of Power Source,268,315-25.
  20. Roth, EP, ,Doughty, DH(2004).Thermal abuse performance of high-power 18650 Li-ion cells.Journal of Power Source,128,308-18.
  21. TÜV, Rheinland(2017).TÜV Rheinland. Investigating Battery Safety: Logistics and Assembly. TÜV Rheinland; 23 January 2017..
  22. UL(2017).UL. Failure Analysis of SAMSUNG Note 7. UL; 23 January 2017..
  23. Venkatachalapathy, R,Lee, CW,Lu, W,Prakash, J(2000).Thermal investigations of transition metal oxide cathodes in Li-ion cells, Electrochem.Commun,2,104-07.