题名

以純對苯二甲酸製造程序風險危害分析之研究

并列篇名

Study on Hazards Analysis and Risk Assessment of the PTA Manufacturing Processes

作者

廖本弘(Pen-Hung Liao);金大仁(Tai-Yan Kam);陳俊瑜(Chun-Yu Chen)

关键词

純對苯二甲酸 ; 危險及可操作性分析 ; 保護層分析 ; 失誤樹分析 ; 智慧化巡檢 ; Purified Terephthalic Acid ; Hazard and Operability Study ; Layer of Protection Analysis ; Independent protection layer ; Smart patrolling system

期刊名称

勞動及職業安全衛生研究季刊

卷期/出版年月

26卷3期(2018 / 09 / 15)

页次

175 - 187

内容语文

繁體中文

中文摘要

本研究對象為某石化廠,產品為純對苯二甲酸(Purified Terephthalic Acid, PTA),該廠製程中使用及產生高壓氣體,符合到丙類危險性工作場所之標準,將利用危險及可操作性分析方法(Hazard and operability study, HazOp)和保護層分析(Layer of protection analysis, LOPA)方法評估製程危害,及利用失誤樹(Fault Tree analysis, FTA)分析反應器爆炸主因。製程區經初步危害分析為風險危害等級最高,所以在製程區選定6大區域分析,HazOp共有25個節點及偵測或防護措施共55項;其中嚴重度為5共5項,進一步使用LOPA計算各獨立保護層失效概率,有效掌握改善前及改善後風險等級,經由新加措施,風險降低後都能達到可接受風險;再利用FTA分析反應器爆炸原因,原因為反應器攪拌器低轉速危害失誤率為6.13×10-11,觸媒進料低流速造成危害失誤率為1.44×10- 11,藉由FTA找出反應器爆炸主因,訂定降低失誤率方法及有效降低庫存及購買成本。經由HazOp、LOPA及FTA風險評估工具分析,人員巡檢能直接改善風險與預知危害,分析製程危害改善須從製程操作、製程參數、防護措施及導入智慧巡檢系統著手,智慧化巡檢採用近距離無線通訊(Near Field Communication, NFC)行動科技方案,將紙本抄錶傳化成電子化,將廠內60個紙本表格轉換成300個電子表單,安裝在平板電腦分配給操作人員使用,並在製程區佈署NFC感應點位。讓操作人員查看操作數據並直接用平板電腦輸入讀值,數據上傳到公司的雲端資料庫分析。如果有異常,提前做預防措施,降低風險。藉由本研究能提供其他國內石化廠或化工廠為參考,依循本研究方法來檢視自己企業內風險評估工具及製程風險量化數據,來檢討企業內相關降低風險措施。

英文摘要

This study takes a petrochemical plant in Taiwan as the subject. The petrochemical plant produces Purified Terephthalic Acid (PTA) and the high-pressure gases used and produced during the production have been categorized as Class C dangerous work place. This study applies both the Hazard and operability study (HazOp) and the Layer of Protection Analysis (LOPA) to evaluate the process hazard and performs the Fault Tree Analysis (FTA) to evaluate the main causes of reactor explosion. Assuming the process scenario as the explosion risk, the HazOp selects 6 major zones for analysis. A total of 55 items have been analyzed including 25 knots and detective or preventive measures; among them, five items have been ranked Level 5 severity. LOPA is further applied to calculate the failure probability of each independent protection layer in order to effectively control the risks after the improvement. With the application of new measures, the risks have been reduced to acceptable level. FTA is applied to analyze the causes of reactor explosion and finds the error rates due to low speed of stirred tank reactor and catalyst feeding are 6.13×10^(-11) and 1.44×10^(-11) respectively. Finding the main reasons for reactor explosion with the application of FTA, the results help to reduce the error rate, inventory and purchase costs. With the risk assessment tools such as HazOp, LOPA and FTA, patrol personnel can reduce risks and prevent damages directly. Process Hazard Analysis improvement begins with process operation, process parameter, protective measure and the implementation of smart patrolling system. The smart patrolling system adopts the Near Field Communication (NFC) mobile technology program to replace manual meter reader. A total of 300 paper forms in the factory are converted into 60 electronic forms. The smart patrolling system is installed on the personal digital assistant(PDA) of meter readers. With NFC beacons installed on site, the readers can read and input the data through their PDAs. The data will be uploaded to the cloud database of the company. In case of abnormality, the system will send an immediate warning for immediate repair, and take preventive measures in advance to reduce the risk. This study aims to serve as a reference for other domestic petrochemical or chemical plants to examine their quantitative data of risk assessment tool and process risk as well as to examine the internal risk reduction measures of the enterprise.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
工程學 > 市政與環境工程
参考文献
  1. 醋酸SDS。行政院勞動部化學品全球調和制度網站。https://ghs.osha.gov.tw/CHT/intro/MSDS.aspx?casno=64-19-7&cssid=3
  2. 對二甲苯SDS。行政院勞動部化學品全球調和制度網站。https://ghs.osha.gov.tw/CHT/intro/MSDS.aspx?casno=1330-20-7&cssid=3。
  3. American Institute of Chemical Engineers=AICE(1989).Guidelines for Process Equipment Reliability Data, with Data Tables.NY:The Institute.
  4. Center for Chemical Process Safety, Layer of Protection Analysis(2001).Simplified Process Risk Analysis, American Institute of Chemical Engineers.NY:The Institute.
  5. José, Luis FB,Ma, Carmen GC,Cristina, GG,Ma, Piedad BP(2017).Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA.International Journal of Environmental Research and Public Health,14,705.
  6. Khalil, M,Abdou, MA,Mansour, MS,Farag, HA,Ossman, ME(2012).A cascaded fuzzy-LOPA risk assessment model applied in natural gas industry.Journal of Loss Prevention in the Process Industries,25,877-82.
  7. Summers, AE(2003).Introduction to layers of protection analysis.Journal of Hazardous Materials,104,163-68.
  8. 于樹偉、周更生(2014)。化學工業安全概論。新北市:高麗圖書有限公司。
  9. 曹常成、洪銀忠(1998)。風險評估在石化業安全衛生管理之角色與功能。勞動部職業安全衛生署。
  10. 陳俊瑜、王世煌、張國基(2015)。產業製程安全管理與技術實務。台北市:五南圖書出版股份有限公司。
  11. 陳俊瑜、張國基(2017)。高科技產業製程安全技術與管理─本質較安全設計。台北市:五南圖書出版股份有限公司。
  12. 勞動部職業安全衛生署。勞動檢查法。勞動部職業安全衛生署;2015。
  13. 勞動部職業安全衛生署。職業安全衛生法。勞動部職業安全衛生署;2013。
  14. 黃清賢(2018)。危害分析與風險評估。台北市:三民書局股份有限公司。
  15. 經濟部標準檢驗局。CNS 31010風險管理-風險評鑑技術。經濟部標準檢驗局;2012。