题名

人工智慧技術應用於桃園交通感測網路

并列篇名

Artificial Intelligence Applications for Taoyuan Traffic Sensor Network

DOI

10.6653/MoCICHE.201804_45(2).0007

作者

簡培原(Pei-Yuan Chien);劉慶豐(Ching-Feng Liu);張新福(Hsin-Fu Chang);熊啟中(Chi-Chung Hsiung);李慶憲(Ching-Hsien Li);闕嘉宏(Chia-Hung Chueh);黃惠隆(Huei-Lung Hwang);游上民(Shang-Min Yu)

关键词
期刊名称

土木水利

卷期/出版年月

45卷2期(2018 / 04 / 01)

页次

51 - 54

内容语文

繁體中文

中文摘要

人工智慧係藉由大量的電腦科學訓練,實現了各領域的專業人類智慧技術。本研究結合桃園市多元化的交通感測網路與交控中心的專業人員知識,共同開發出桃園交通大數據系統。數據底層中以階層集群分析法,建立人工智慧品管監督,取代大量的人為判斷工作;演算層以深度學習法,融合了異質性的交通數據,達到精確且有效的預測能力;應用層更開發路況顯微鏡,結合城際與市區數據協作,引領人工智慧科技真正落地至實體交通網路應用。

英文摘要

Artificial intelligence is demonstrated by computer science, in realization to the human intelligence. This research is based on diversified data source in Taoyuan traffic sensor network, cooperated with professional technicians and developed the data science application for traffic control center. In the data base, hierarchical clustering reduces the premium maintenance cost. Deep learning algorithm offers the heterogeneity data fusion, creates the stable and accurate prediction ability. System also combines the inter and inner city source with Taiwan freeway bureau, leads the Artificial intelligence technology to be implemented in physical traffic network.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. https://www.tensorflow.org
  2. https://github.com/jameslyons/python-neural-nets/blob/master/dnn.py
  3. Huang, W.,Song, G.,Hong, H.,Xie, K.(2014).Deep architecture for traffic flow prediction: Deep belief networks with multitask learning.IEEE Trans. Intell. Transp. Syst.,15,2191-2201.
  4. Jia, Y.,Wu, J.,Du, Y.(2016).Traffic speed prediction using deep learning method.IEEE 19th Intl. Conf. on Intelligent Transportation Systems (ITSC)
  5. Lewis, C. D.(1982).Industrial and Business Forecasting Methods.London:Butterworth Scientific.