题名

機器學習於橋墩沖刷預測之應用

DOI

10.6653/MoCICHE.201810_45(5).0015

作者

張世昇;張家銘;陳翊翔;林詠彬;張書瑋;張國鎮;陳俊杉

关键词
期刊名称

土木水利

卷期/出版年月

45卷5期(2018 / 10 / 01)

页次

111 - 117

内容语文

繁體中文

中文摘要

台灣山區地勢陡峻、東西方向狹窄,豪雨期間河川流速湍急,導致橋墩常面臨嚴重的沖刷。橋樑沖刷深度目前多依賴經驗公式推估,但在精準度及適用性皆有許多改善空間。伴隨科技進步,橋梁沖刷的監測技術已可以精準的量測沖刷深度並擷取到非常大量的資料,因應大數據時代及人工智慧的發展,可以透過長期量測的資料建立精準的沖刷預測模型。本文介紹由國家地震工程研究中心研發的橋墩沖刷監測系統,並探討如何透過機器學習,將濁水溪流域的自強大橋長期監測的沖刷資料建立沖刷深度預測模型,藉由類神經網路高度非線性特性反應水位、流速對單一橋墩的沖刷深度之影響,並探討將此預測模型發展為泛用於其他橋墩之可行性。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. Bateni, S. M.,Borghei, S. M.,Jeng, D. S.(2007).Neural network and neuro-fuzzy assessments for scour depth around bridge piers.Engineering Applications of Artificial Intelligence,20(3),401-414.
  2. Breusers, H. N. C.,Nicollet, G.,Shen, H. W.(1977).Local scour around cylindrical piers.Journal of Hydraulic Research,15(3),211-252.
  3. Choi, S. U.,Cheong, S.(2006).Prediction of local scour around bridge piers using artificial neural networks.Journal of the American Water Resources Association,42(2),487-494.
  4. Graf, W. H.,Istiarto, I.(2002).Flow pattern in the scour hole around a cylinder.Journal of Hydraulic Research,40(1),13-20.
  5. Hebb, D.O. (1949), The Organization of Behavior, Wiley: New York, USA.
  6. Hinton, G. E.,Osindero, S.,Teh, Y. W.(2006).A fast learning al-gorithm for deep belief nets.Neural Computation,18(7),1527-1554.
  7. LeCun, Y.,Boser, B.,Denker, J. S.,Henderson, D.,Howard, R. E.,Hubbard, W.,Jackel, L. D.(1989).Backpropagation applied to handwritten zip code recognition.Neural Computation,1(4),541-551.
  8. Lee, T. L.,Jeng, D. S.,Zhang, G. H.,Hong, J. H.(2007).Neural network modeling for estimation of scour depth around bridge piers.Journal of Hydrodynamics, Ser. B,19(3),378-386.
  9. Melville, B. W.(1984).Live-bed scour at bridge piers.Journal of Hydraulic Engineering,110(9),1234-1247.
  10. Raudkivi, A. J.,Ettema, R.(1983).Clear-water scour at cylindrical piers.Journal of Hydraulic Engineering,109(3),338-350.
  11. Rosenblatt, F.(1958).The perceptron: a probabilistic model for information storage and organization in the brain.Psychological Review,65(6),386.
  12. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323(88),533.
  13. Sheppard, D. M.,Miller, W.(2006).Live-bed local pier scour experiments.Journal of Hydraulic Engineering,132(7),635-642.
  14. Shirole, A. M.,Holt, R. C.(1991).Planning for a comprehensive bridge safety assurance program.Transportation Research Record,1290,39-50.
  15. Toth, E.,Brandimarte, L.(2011).Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks.Journal of Hydroinformatics,13(4),812-824.
  16. Zounemat-Kermani, M.,Beheshti, A.-A.,Ataie-Ashtiani, B.,Sabbagh-Yazdi, S.-R.(2009).Estimation of current-induced scour depth around pile groups using neural network and adaptive neurofuzzy inference system.Applied Soft Computing,9(2),746-755.
  17. 林詠彬,古孟晃,李柏翰,廖泰杉,吳志泓,陳倫奇(2016)。橋梁沖刷防災雲端監測技術。科學發展月刊,519,28-33。
  18. 張世昇(2018)。國立臺灣大學工學院土木工程學系。