题名

地震對於離岸風機之影響探討

DOI

10.6653/MoCICHE.202210_49(5).0006

作者

邱覺生;朱聖浩

关键词

離岸風機 ; 地震 ; 颱風 ; 土壤液化

期刊名称

土木水利

卷期/出版年月

49卷5期(2022 / 10 / 01)

页次

48 - 54

内容语文

繁體中文

中文摘要

本文為為探討地震對風機影響,用土壤-結構互制作用及有限元素法對離岸風機(OWT)之支撐結構進行地震、颱風、風和波浪作用進行分析和設計,並包括保守的土壤液化分析。而隨著未來OWT朝大功率發電,功率由5MW提高到10MW、15MW乃至於20MW,葉片直徑將由178.8公尺增加至254.7公尺,無論是支撐結構尺寸或是重量都有所提升,故地震力對於海上風機的影響也將劇增。本研究針對不同發電功率的套管式(jacket-type)海上風機進行地震力之分析,透過靜載重、風載重、波浪載重、海流載重和地震載重的三維有限元素分析,以極限設計考量。其結果顯示,地震力設計對於大尺寸的海上風機是不可被忽視的。面對多地震與颱風頻繁的台灣海峽,應當採取適合及因地制宜的設計方式,以避免未來風險,降低維修成本與符合經濟效益。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. American Petroleum Institute=API(1997).Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design.Washington:American Petroleum Institute.
  2. Asareh, M.,Schonberg, W.,Volz, J.(2016).Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method.Finite Elem Anal Des,120,57-67.
  3. Austin, S.,Jerath, S.(2017).Effect of soil-foundation-structure interaction on seismic response of wind turbines.Ain Shams Eng. J,8,323-331.
  4. Boulanger, R.W.,Curras, C.J.,Kutter, B.L.,Wilson, D.W.,Abghari, A.(1999).Seismic soil-pile-structure interaction experiments and analyses.Journal of geotechnical and geoenvironmental engineering,125,750-759.
  5. Haciefendioglu, K.(2012).Stochastic seismic response analysis of offshore wind turbine including fluid-structure-soil interaction.Struct Design Tall Spec Build.,12,867-878.
  6. Harte, M.,Basu, B,Nielsen, S.(2014).Dynamic analysis of wind turbines including soil-structure interaction.Eng. Struct.,45,509-518.
  7. Idriss, I. M.,Sun, J. I.(1993).User’s manual for SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits.Davis, Calif.:Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, University of California at Davis.
  8. International Electrotechnical Commission(2019).IEC 61400-3-1 Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines.Geneva, Switzerland:International Electrotechnical Commission.
  9. Jonkman, B.,Jonkman, J.(2016).Jonkman, B. and Jonkman, J. (2016). FAST v8.15.00a-bjj. National Renewable Energy Laboratory, Golden, CO 80401..
  10. Jonkman, B.J.,Kilcher, L.(2012).Turbsim User’s Guide; version 1.06.00Turbsim User’s Guide; version 1.06.00,Golden, CO, USA:National Renewable Energy Laboratory.
  11. Ju, S. H.,Huang, Y. C.(2019).Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes.Ocean Engineering,187,106190.
  12. Ju, S.H.(2022).Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping.Renewable & Sustainable Energy Reviews,162,112458.
  13. Ku, C.,Chien, L.(2016).Modeling of Load Bearing Characteristics of Jacket Foundation Piles for Offshore wind turbines in Taiwan.Energies,9,625.
  14. MIT(1976).SIMQKE: A Program for Artificial Motion Generation: User’s Manual and Documentation.M.I.T. Department of Civil Engineering.
  15. Santangelo, F.,Failla, G.,Santini, A.,Arena F.(2016).Time-domain uncoupled analyses for seismic assessment of land-based wind turbines.Eng Struct.,123,275-299.
  16. Wang, W.,Gao, Z.,Li, X.,Moan, T.(2017).Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads.J. Offshore Mech Arct of the ASME.,139,031901.
  17. Zhang, P.,Xiong, K.,Ding, H.,Le, C.(2014).Anti-liquefaction characteristics of composite bucket foundations for offshore wind turbines.J. Renew Sustain Ener.,6,053102.