题名

氣候變遷下的空氣污染分布:地理人工智慧技術之應用

DOI

10.6653/MoCICHE.202302_50(1).0004

作者

吳治達;曾于庭

关键词
期刊名称

土木水利

卷期/出版年月

50卷1期(2023 / 02 / 01)

页次

16 - 23

内容语文

繁體中文

中文摘要

工業化的過程中所排放的溫室氣體不僅會增強全球暖化,石化燃料燃燒所產生的空氣污染亦會嚴重衝擊人類健康,因此正確的估計國人在氣候變遷影響下之空氣污染暴露情形,實為當前環保單位的重要挑戰。受限於現有空氣品質監測站空間分布不均、數量不足等問題,我們需要一個更有效、更快速、更準確的模擬方法,以正確評估都市居民每個人的空氣污染暴露程度。近年來結合衛星、航照、無人機影像及地理資訊系統(Geographic Information System, GIS)等空間資訊技術(Geo-Spatial Technologies)以獲取環境監測樣本,並搭配機械學習(Machine Learning)及集成學習(Ensemble Learning)等人工智慧(Artificial Intelligence, AI)演算法進行高準確度推估模型擬合之「地理人工智慧(Geo-AI)」技術,已逐漸成為當代空氣污染模擬的主流方法學。基於此,本文綜整近年來有關Geo-AI在空氣污染模擬上的研究成果及應用案例,依據使用的空間推估模型方法學,分為:(1)空間內插(Spatial Interpolation);(2)土地利用迴歸(Land-use Regression, LUR);(3)機械學習與集成學習;(4)新興空間資訊科技之應用等四個面向進行介紹。本文之統整成果可做為未來在評估氣候變遷影響下都市防災與空氣污染影響之重要佐參。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. Babaan, J.,Hsu, F.T.,Wong, P.Y.,Chen, P.C.,Guo, Y.L.,Lung, S.C.C.,Chen, Y.C.,Wu, C.D.(2023).A Geo-AI -based Ensemble Mixed Spatial Prediction Model with Fine Spatial-Temporal Resolution for Estimating Daytime/Nighttime/Daily Average Ozone Concentrations Variations in Taiwan.Journal of Hazardous Materials,446,130749.
  2. Beelen, R.,Hoek, G.,Vienneau, D.,Eeftens, M.,Dimakopoulou, K.,Pedeli, X.,de Hoogh, K.(2013).Development of NO2 and NOx Land Use Regression Models for Estimating Air Pollution Exposure in 36 Study Areas in Europe–The ESCAPE Project.Atmospheric Environment,72,10-23.
  3. Bertazzon, S.,Johnson, M.,Eccles, K.,Kaplan, G.G.(2015).Accounting for Spatial Effects in Land Use Regression for Urban Air Pollution Modeling.Spatial and spatio-temporal epidemiology,14,9-21.
  4. Briggs, D.J.,Collins, S.,Elliott, P.,Fischer, P.,Kingham, S.,Lebret, E.,Van Der Veen, A.(1997).Mapping Urban Air Pollution Using GIS: A Regression-Based Approach.International Journal of Geographical Information Science,11(7),699-718.
  5. Chen, T.H.,Hsu, Y.C.,Zeng, Y.T.,Lung, S.C.C.,Su, H.J.,Chao, H.J.,Wu, C.D.(2020).A Hybrid Kriging/Land-use Regression Model with Asian Culture-Specific Sources to Assess NO2 Spatial-Temporal Variations.Environmental Pollution,259,113875.
  6. Dhingra, S.,Madda, R.B.,Gandomi, A.H.,Patan, R.,Daneshmand, M.(2019).Internet of Things Mobile–Air Pollution Monitoring System (Iot-Mobair).IEEE Internet of Things Journal,6(3),5577-5584.
  7. Dons, E.,Van Poppel, M.,Kochan, B.,Wets, G.,Panis, L.I.(2013).Modeling Temporal and Spatial Variability of Traffic-Related Air Pollution: Hourly Land Use Regression Models for Black Carbon.Atmospheric Environment,74,237-246.
  8. Eeftens, M.,Beelen, R.,De Hoogh, K.,Bellander, T.,Cesaroni, G.,Cirach, M.,Hoek, G.(2012).Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and Pmcoarse in 20 European Study Areas; Results of The ESCAPE Project.Environmental science & technology,46(20),11195-11205.
  9. Hsu, C.Y.,Wu, C.D.,Hsiao, Y.P.,Chen, Y.C.,Chen, M.J.,Lung, S.C.C.(2018).Developing Land-Use Regression Model to Estimate PM2.5-bound Compound Concentrations.Remote Sensing,10,1971.
  10. Hsu, C.Y.,Wu, J.Y.,Chen, M.J.,Chen, Y.C.,Pan, W.C.,Lung, S.C.C.,Guo, Y. L.,Wu, C. D.(2019).Asian Culturally-Specific Predictors in a Large-Scale Land Use Regression Model to Predict Spatial-Temporal Variability of Ozone Concentration.International Journal of Environmental Research and Public Health,16,1300.
  11. Hsu, C.Y.,Xie, H.X.,Wong, P.Y.,Chen, Y.C.,Chen, P.C.,Wu, C.D.(2022).A Mixed Spatial Prediction Model in Estimating Spatiotemporal Variations in Benzene Concentrations in Taiwan.Chemosphere,301,134758.
  12. Hsu, C.Y.,Zeng, Y.T.,Chen, Y.C,Chen, M.J.,Lung, S.C.C.,Wu, C.D.(2020).Kriging-based Land-use Regression Models that Use Machine Learning Algorithms to Estimate the Monthly BTEX Concentration.International Journal of Environmental Research and Public Health,17,6956.
  13. Kim, Y.,Guldmann, J. M.(2015).Land-Use Regression Panel Models of NO2 Concentrations in Seoul, Korea.Atmospheric Environment,107,364-373.
  14. Lee, J.H.,Wu, C.F.,Hoek, G.,de Hoogh, K.,Beelen, R.,Brunekreef, B.,Chan, C.C.(2015).LUR Models for Particulate Matters in the Taipei Metropolis with High Densities of Roads and Strong Activities of Industry, Commerce and Construction.Science of the Total Environment,514,178-184.
  15. Lee, J.H.,Wu, C.F.,Hoek, G.,de Hoogh, K.,Beelen, R.,Brunekreef, B.,Chan, C.C.(2014).Land Use Regression Models for Estimating Individual NOX and NO2 Exposures in a Metropolis with a High Density of Traffic Roads and Population.Science Of The Total Environment,472,1163-1171.
  16. Liu, C.,Henderson, B.H.,Wang, D.,Yang, X.,Peng, Z.R.(2016).A Land Use Regression Application into Assessing Spatial Variation of Intra-Urban Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) Concentrations in City of Shanghai, China.Science of the Total Environment,565,607-615.
  17. Liu, W.,Li, X.,Chen, Z.,Zeng, G.,León, T.,Liang, J.,Lai, M.(2015).Land Use Regression Models Coupled with Meteorology to Model Spatial and Temporal Variability Of NO2 and PM10 in Changsha, China.Atmospheric Environment,116,272-280.
  18. Pan, W.C.,Wu, C.D.,Chen, M.J.,Huang, Y.T.,Chen, C.J.,Su, H.J.,Yang, H. I.(2016).Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV).JNCI: Journal of the National Cancer Institute,108(3)
  19. Pochwa a, S.,Anweiler, S.,Deptu a, A.,Gardecki, A.,Lewandowski, P.,Przysi niuk, D.(2021).Optimization of Air Pollution Measurements with Unmanned Aerial Vehicle Low-Cost Sensor Based on an Inductive Knowledge Management Method.Optimization and Engineering,22(3),1783-1805.
  20. Rahman, M.H.,Agarwal, S.,Sharma, S.,Suresh, R.,Kundu, S.,Vranckx, S.,Batra, S.(2022).High-Resolution Mapping of Air Pollution in Delhi Using Detrended Kriging Model.Environmental Modeling & Assessment,1-16.
  21. Ren, X.,Mi, Z.,Georgopoulos, P.G.(2020).Comparison of Machine Learning and Land Use Regression for Fine Scale Spatiotemporal Estimation of Ambient Air Pollution: Modeling Ozone Concentrations Across the Contiguous United States.Environment International,142,105827.
  22. Shahriar, S.A.,Kayes, I.,Hasan, K.,Hasan, M.,Islam, R.,Awang, N.R.,Hamzah, Z.,Rak, A.E.,Salam, M.A.(2021).Potential of Arima-Ann, Arima-SVM, Dt and Catboost for Atmospheric PM2.5 Forecasting in Bangladesh.Atmosphere,12(1),100.
  23. Shukla, K.,Kumar, P.,Mann, G.S.,Khare, M.(2020).Mapping Spatial Distribution of Particulate Matter Using Kriging and Inverse Distance Weighting at Supersites of Megacity Delhi.Sustainable Cities and Society,54,101997.
  24. Tunno, B.J.,Michanowicz, D.R.,Shmool, J.L.,Kinnee, E.,Cambal, L.,Tripathy, S.,Clougherty, J.E.(2016).Spatial Variation in Inversion-Focused Vs 24-H Integrated Samples of PM2.5 And Black Carbon Across Pittsburgh, PA.Journal of Exposure Science & Environmental Epidemiology,26(4),365-376.
  25. Wang, M.,Beelen, R.,Bellander, T.,Birk, M.,Cesaroni, G.,Cirach, M.,Brunekreef, B.(2014).Performance of Multi-City Land Use Regression Models for Nitrogen Dioxide and Fine Particles.Environmental Health Perspectives,122(8),843-849.
  26. Wang, M.,Gehring, U.,Hoek, G.,Keuken, M.,Jonkers, S.,Beelen, R.,Brunekreef, B.(2015).Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches.Environmental health perspectives,123(8),847-851.
  27. Wang, R.,Henderson, S.B.,Sbihi, H.,Allen, R.W.,Brauer, M.(2013).Temporal Stability of Land Use Regression Models for Traffic-Related Air Pollution.Atmospheric Environment,64,312-319.
  28. Weichenthal, S.,Van Ryswyk, K.,Goldstein, A.,Shekarrizfard, M.,Hatzopoulou, M.(2016).Characterizing the Spatial Distribution of Ambient Ultrafine Particles in Toronto, Canada: a Land Use Regression Model.Environmental pollution,208,241-248.
  29. Widya, L.K.,Hsu, C.Y.,Lee, H.Y.,Jaelani, L.M.,Lung, S.C.C.,Su, H.J.,Wu, C.D.(2020).Comparison of Spatial Modelling Approaches on PM10 and NO2 Concentration Variations: A Case Study in Surabaya City, Indonesia.International Journal of Environmental Research and Public Health,17(23),8883.
  30. Widya, L.K.,Wu, C.D.,Zeng, Y.T.,Handayani, H.H.,Jaelani, L.M.(2019).PM2.5 Pollutant in Asia Metropolis Cities – A Comparison Between Indonesia and Taiwan.International Journal of Environmental Research and Public Health,16,4924.
  31. Wong, P.Y.,Hsu, C.Y.,Wu, J.Y.,Teo, T.A.,Huang, J.W.,Guo, H.R.,Spengler, J.D.(2021).Incorporating Land-Use Regression into Machine Learning Algorithms in Estimating the Spatial-Temporal Variation of Carbon Monoxide in Taiwan.Environmental Modelling & Software,139,104996.
  32. Wong, P.Y.,Lee, H.Y.,Chen, L.J.,Chen, Y.C.,Chen, N.T.,Lung, S.C. C.,Spengler, J.D.(2022).An Alternative Approach for Estimating Large-Area Indoor PM2.5 Concentration–A Case Study of Schools.Building and Environment,109249.
  33. Wong, P.Y.,Lee, H.Y.,Chen, Y.C.,Zeng, Y.T.,Chern, Y.R.,Chen, N.T.,Lung, S.C.C.,Su, H.J.,Wu, C.D.(2021).Using a Land Use Regression Model with Machine Learning to Estimate Ground Level PM2.5.Environmental Pollution,277(15),116846.
  34. Wong, P.Y.,Su, H.J.,Lee, H.Y.,Chen, Y.C.,Hsiao, Y.P.,Huang, J.W.,Spengler, J. D.(2021).Using Land-Use Machine Learning Models to Estimate Daily NO2 Concentration Variations in Taiwan.Journal of Cleaner Production,317,128411.
  35. Wong, P.Y.,Su, H.J.,Lung, S.C.C.,Wu, C.D.(2023).An Ensemble Mixed Spatial Model in Estimating Long-Term and Diurnal Variations of PM2.5 in Taiwan.Science of The Total Environment,161336.
  36. Wonohardjo, E.P.,Kusuma, G.P.(2019).Air Pollution Mapping Using Mobile Sensor Based on Internet of Things.Procedia Computer Science,157,638-645.
  37. Wu, C.D.,Chen, Y.C.,Pan, W.C.,Zeng, Y.T.,Chen, M. J.,Guo, Y.L.,Lung, S.C.C.(2017).Land-Use Regression with Long-Term Satellite-Based Greenness Index and Culture-Specific Sources to Model PM2.5 Spatial-Temporal Variability.Environmental Pollution,224,148-157.
  38. Wu, C.D.,Zeng, Y.T.,Lung, S.C.C.(2018).A Hybrid Kriging/Land-Use Regression Model to Assess PM2.5 Spatial-Temporal Variability.Science of the Total Environment,645,1456-1464.
  39. Zhan, Y.,Luo, Y.,Deng, X.,Zhang, K.,Zhang, M.,Grieneisen, M.L.,Di, B.(2018).Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model.Environmental Science & Technology,52(7),4180-4189.
  40. Zheng, T.,Li, B.,Li, X.B.,Wang, Z.,Li, S.Y.,Peng, Z.R.(2021).Vertical and Horizontal Distributions of Traffic-Related Pollutants Beside an Urban Arterial Road Based on Unmanned Aerial Vehicle Observations.Building and Environment,187,107401.