题名

消波塊型地震超材料設計及減震效果模擬分析

DOI

10.6653/MoCICHE.202308_50(4).0009

作者

王聖翔;蘇于琪

关键词

地震超材料 ; 隔減震技術 ; 消波塊 ; 地震工程 ; 暫態分析

期刊名称

土木水利

卷期/出版年月

50卷4期(2023 / 08 / 01)

页次

51 - 57

内容语文

繁體中文

中文摘要

目前地震工程的隔減震技術多針對單一建築進行加固與消能,例如加強結構的強度與韌性、在底部使用隔震支承、利用消能元件吸收震動能量等。近十年來,以波傳與複合材料角度切入的地震超材料(Seismic Metamaterial, SM)研究在國外逐漸興起,其特色在於地震超材料的減震不需接觸建築物本身,而在社區外圍建立屏障阻隔特定頻段的地震波,此方法對於具有大量老舊建築的台灣特別適用。因此,本文針對地震超材料的設計進行研究。文獻上現有的地震超材料多使用特殊的幾何與材料,常面臨昂貴成本導致實際應用的困難。本研究以常見的土木材料-混凝土、消波塊體、圓板與半球為元素,組合出新穎的消波塊型地震超材料,透過頻散分析與全域暫態模擬,驗證此設計對地震表面波的衰減效果。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. 李冠慧,汪向榮,蘇于琪,游忠翰,張國鎮,陳東陽(2020)。地震超材料設計之減震分析及效益評估。中國土木水利工程學刊,32(7),597-607。
    連結:
  2. 蘇于琪,汪向榮,張文忠,林子剛,林正洪,吳東諭,張國鎮,陳東陽(2022)。地震超材料的隔減震技術。結構工程期刊,37(3),66-80。
    連結:
  3. Wikipedia: seismic wave. https://en.wikipedia.org/wiki/Seismic_wave (last visited 2023/8/14).
  4. 中央氣象局地震測報中心網站 https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/55 (last visited 2023/8/14).
  5. The guided wave innovation company: plates and shells. http://www.gwultrasonics.com/knowledge/plateshell/ (last visited 2023/8/14).
  6. Achaoui, Y.,Antonakakis, T.,Brûlé, S.,Craster, R.V.,Enoch, S.,Guenneau, S.(2017).Clamped seismic metamaterials: ultra low frequency stop bands.New Journal of Physics,19,063022.
  7. Achaoui, Y.,Ungureanu, B.,Enoch, S.,Brûlé, S.,Guenneau, S.(2016).Seismic waves damping with arrays of inertial resonators.Extreme Mechanics Letters,8,30-37.
  8. Alagoz, B.B.,Alagoz, S.(2011).Towards earthquake shields: a numerical investigation of earthquake shielding with seismic crystals.Open Journal of Acoustics,1,63-69.
  9. Amanat, S.,Rafiee-Dehkharghani, R.,Bitaraf, M.,Bansal, D.(2022).Analytical and numerical investigation of finite and infinite periodic lattices for mitigation of seismic waves in layered grounds.International Journal of Engineering Science,173,103655.
  10. Bloch, F., “Über die quantenmechanik der elektronen in kristallgittern,” Zeitschrift für Physik, Vol. 52, pp. 555-600 (1929).
  11. Brillouin, L.(2003).Wave propagation in periodic structures.Dover Publications.
  12. Brûlé, S.,Enoch, S.,Guenneau, S.(2019).Emergence of seismic metamaterials: current state and future perspectives.Physics Letter A,384,126034.
  13. Chen, Y.,Qian, F.,Scarpa, F.,Zuo, L.,Zhuang, X.(2019).Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps.Materials & Design,175,107813.
  14. Chen, Z.,Fang, H.,Han, Z.,Sun, S.(2019).Influence of bridge-based designed TMD on running trains.Journal of Vibration and Control,25,182-193.
  15. Cheng, Z.B.,Shi, Z.F.(2018).Composite periodic foundation and its application forseismic isolation.Earthquake Engineering & Structural Dynamics,47,925-944.
  16. Colombi, A.,Colquitt, D.,Roux, P.,Guenneau, S.,Craster, R.V.(2016).A seismic metamaterial: the resonant metawedge.Scientific Reports,6,27717.
  17. Colombi, A.,Roux, P.,Guenneau, S.,Craster, R.V.(2016).Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.Scientific Reports,6,1-7.
  18. COMSOL, BDF, Generalized Alpha, and Runge- Kutta Methods. https://www.comsol.com/support/knowledgebase/1062 (Last visited 2023/7/7).
  19. D'Alessandro, L.,Belloni, E.,Ardito, R.,Braghin, F.,Corigliano, A.(2017).Mechanical low frequency filter via modes separation in 3D periodic structures.Applied Physics Letters,111,231902.
  20. Du, Q.,Zeng, Y.,Huang, G.,Yang, H.(2017).Elastic metamaterial-based seismic shield for both Lamb and surface waves.AIP Advances,7,075015.
  21. Du, Q.,Zeng, Y.,Xu, Y.,Yang, H.,Zeng, Z.(2018).H-fractal seismic metamaterial with broadband low-frequency bandgaps.Journal of Physics D: Applied Physics,51,105104.
  22. Finocchio, G.,Casablanca, O.,Ricciardi, G.,Alibrandi, U.,Garesci, F.,Chiappini, M.,Azzerboni, B.(2014).Seismic metamaterials based on isochronous mechanical oscillators.Applied Physics Letters,104,191903.
  23. Holliman, J.E., Jr,Schaef, H.T.,McGrail, B.P.,Miller, Q.R.(2022).Review of foundational concepts and emerging directions in metamaterial research: design, phenomena, and applications.Materials Advances,3,8390-8406.
  24. Huang, T.T.,Ren, X.,Zeng, Y.,Zhang, Y.,Luo, C.,Zhang, X.Y.,Xie, Y.M.(2021).Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves.Engineering Structures,246,112976.
  25. Khelif, A.,Achaoui, Y.,Benchabane, S.,Laude, V.,Aoubiza, B.(2010).Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface.Physical Review B,81,214303.
  26. Li, J.,Zhang, H.,Chen, S.,Zhu, D.(2020).Optimization and sensitivity of TMD parameters for mitigating bridge maximum vibration response under moving forces.Structures,28,512-520.
  27. Li, L.,Jia, Q.,Tong, M.,Li, P.,Zhang, X.(2021).Radial seismic metamaterials with ultra-low frequency broadband characteristics.Journal of Physics D: Applied Physics,54,505104.
  28. Liu, Z.,Zhang, X.,Mao, Y.,Zhu, Y.,Yang, Z.,Chan, C.T.,Sheng, P.(2000).Locally resonant sonic materials.Science,289,1734-1736.
  29. Maheshwari, H.K.,Rajagopal, P.(2022).Novel locally resonant and widely scalable seismic metamaterials for broadband mitigation of disturbances in the very low frequency range of 0–33 Hz.Soil Dynamics and Earthquake Engineering,161,107409.
  30. Miniaci, M.,Krushynska, A.,Bosia, F.,Pugno, N.M.(2016).Large scale mechanical metamaterials as seismic shields.Journal of Physics,18,083041.
  31. Muhammad,Lim, C.W.(2019).Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps.Physics Letters A,383,2789-2796.
  32. Muhammad,Lim, C.W.,Reddy, J.N.(2019).Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium.Engineering Structures,188,440-451.
  33. Palermo, A.,Krödel, S.,Marzani, A.,Daraio, C.(2016).Engineered metabarrier as shield from seismic surface waves.Scientific Report,6,1-10.
  34. Pu, X.,Shi, Z.(2018).Surface-wave attenuation by periodic pile barriers in layered soils.Construction and Building Materials,180,177-187.
  35. Qahtan, A.S.,Huang, J.,Amran, M.,Qader, D. N.,Fediuk, R.(2022).Seismic composite metamaterial: a review.Journal of Composites Science,6,348.
  36. Richart, F.E.,Hall, F.J.R.,Woods, R.D.(1970).Vibrations of soils and foundations.Prentice-Hall.
  37. Su, Y.C.,Wang, S.S.(2023).Gradient V-Shaped and N-Shaped seismic metamaterials.Materials,16,3074.
  38. Su, Y.C.,Wu, C.K.(2022).A snowman-like seismic metamaterial.Journal of Applied Physics,132,105106.
  39. Yan, Y.,Cheng, Z.,Menq, F.,Tang, Y.,Shi, Z.(2015).Three dimensional periodic foundations for base seismic isolation.Smart Materials and Structures,24,075006.
  40. Zeng, Y.,Xu, Y.,Deng, K.,Peng, P.,Yang, H.,Muzamil, M.,Du, Q.(2019).A broadband seismic metamaterial plate with simple structure and easy realization.Journal of Applied Physics,125,224901.
  41. Zeng, Y.,Xu, Y.,Deng, K.,Zeng, Z.,Yang, H.,Muzamil, M.,Du, Q.(2018).Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space.Journal of Applied Physics,123,214901.
  42. Zeng, Y.,Xu, Y.,Yang, H.,Muzamil, M.,Xu, R.,Deng, K.,Peng, P.,Du, Q(2020).A Matryoshka-like seismic metamaterial with wide band-gap characteristics.International Journal of Solids and Structures,185,334-341.
  43. Zhang, K.,Luo, J.,Hong, F.,Deng, Z.(2021).Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps.Engineering Structures,232,111870.