题名

應用Hyper KANAKO模式模擬建物對土石流溢淹之影響-以臺東縣紅葉村為例

并列篇名

Application of Hyper KANAKO Model to Simulate the Influences of Buildings on Debris-Flow Flooding-A Case Study in Hongye Village, Taitung County

DOI

10.6653/MoCICHE.202308_50(4).0011

作者

許汶芳;詹錢登

关键词

土石流 ; Hyper KANAKO模式 ; 建物阻擋 ; 溢淹範圍 ; Debris flow ; Hyper KANAKO model ; Buildings obstruction ; Inundation areas

期刊名称

土木水利

卷期/出版年月

50卷4期(2023 / 08 / 01)

页次

67 - 76

内容语文

繁體中文;英文

中文摘要

本研究使用Hyper KANAKO模式,以紅葉村土石流潛勢溪流(東縣DF166)為模擬對象,探討流路上建物阻擋對土石流溢淹範圍之影響。考量土石流規模、流路上建物存在與否及建物排列形式等不同條件,分成四種方案進行模擬。方案一以2016年莫蘭蒂颱風土石流出流量為輸入條件進行模擬,並將模擬結果與實際土石流溢淹情形進行比對;方案二與三是按土石流流出量與集水區面積關係設定出四種不同土石流可能流出量,模擬無建物(方案二)及有建物(方案三)在此四種不同流出量條件下的溢淹情形;方案四在兩種土石流流出量及四種不同建物排列(三角形排列、倒三角形排列、長矩形排列與寬矩形排列)條件下,探討建物排列形式對於土石流溢淹範圍之影響。方案一的模擬主要用於參數率定及模式驗證,結果顯示土石流溢淹情形的模擬結果與實際狀況約有80%的吻合率,顯示Hyper KANAKO模式具有良好的模擬效果。由方案二與三的模擬結果,可知流路上建物的存在會阻礙土石流的流動,迫使土石流往橫向流動並擴大溢淹範圍。方案四的模擬結果則顯示建物排列形式會影響溢淹範圍,尤其是前段建物的阻擋效應會影響到後續土石流流動方向及溢淹範圍。

英文摘要

This study utilizes the Hyper KANAKO model to investigate the impact of buildings obstructing debris flow paths on inundation areas, using a debris-flow-prone stream in Hongye Village (Taitung DF166) as the simulation target. Four simulation scenarios were conducted under various conditions, including debris flow scale, the presence of buildings along the flow path, and building arrangement configurations. Scenario1 simulates the debris flow caused by Morakot Typhoon in 2016, compared with the actual debris-flow inundation situation. Scenarios 2 and 3 consider four different debris flow discharges, based on the relationship between debris-flow total volume and its corresponding watershed area. These scenarios simulate inundation situations without buildings (Scenario 2) and with buildings (Scenario 3) for these four discharge levels. In Scenario 4, simulations are conducted for two debris flow discharge levels and four different building arrangements to investigate the impact of building arrangements on the debris flow inundation. The outcomes of the Scenario 1 show an approximately 80% agreement between the simulated and actual debris flow inundation areas, demonstrating the effective capability of the Hyper KANAKO model in debris flow simulation. Results from the Scenarios 2 and 3 simulations suggest that the presence of buildings along the flow path obstructs debris flow, compelling it to move laterally and expand inundation area. Results from the Scenario 4 simulation reveal that building arrangements significantly affect the extent of inundation, especially the obstructive effect of upstream buildings impacting the subsequent direction of debris flow and inundation area.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. 水土保持局(2017).水土保持手冊-土石流篇.行政院農業委員會.
    連結:
  2. 經濟部水利署水利災害應變學習中心網頁(https://llc.wcdr.ntu.edu.tw)。
  3. Jan, CD.,Chen, CL.(2005).Debris flows caused by Typhoon Herb in Taiwan.Debris-flow Hazards and Related Phenomena,Berlin, Heidelberg:
  4. Nakatani, K.(2019)。Study on hazard mapping of landslide dam breaking and debris flows with simulations。108 年堰塞湖及土砂災害防治技術研習會
  5. Nakatani, K.,Iwanami, E.,Horiuchi, S.,Satofuka, Y.,Mizuyama, T.(2014).Application of “Hyper KANAKO,” a debris flow simulation system using laser profiler data.13th Congress INTERPRAEVENT 2014,Nara, Japan:
  6. Nakatani, K.,Iwanami, E.,Horiuchi, S.,Satofuka, Y.,Mizuyama, T.(2012).Development of “Hyper KANAKO”, a debris flow simulation system based on laser profiler data.12th Congress INTERPRAEVENT 2012,Grenoble, France:
  7. Nakatani, K.,Kosugi, M.,Satofuka, Y.,Mizuyama, T.(2016).Debris flow flooding and debris deposition considering the effect of houses: disaster verification and numerical simulation.International Journal of Erosion Control Engineering,9(4),145-154.
  8. Nakatani, K.,Okuyama, Y.,Hasegawa, Y.,Satofuka, Y.,Mizuyama, T.(2013).Influence of housing and urban development on debris flow flooding and deposition.Journal of Mountain Science,10,273-280.
  9. Nakatani, K.,Wada, T.,Satofuka, Y.,Mizuyama, T.(2008).Development of “Kanako 2D (Ver.2.00),” a user-friendly one- and two-dimensional debris flow simulator equipped with a graphical user interface.International Journal of Erosion Control Engineering,1(2),62-72.
  10. Takahashi, T.(1991).Debris flow.Rotterdam:Balkema.
  11. Takahashi, T.、Nakagawa, H.(1991)。Prediction of stony debris flow induced by severe rainfall。International Journal of Erosion Control Engineering,44(3),12-19。
  12. 中谷加奈(2010)。博士論文(博士論文)。京都大學。
  13. 水土保持局(2016)。水土保持局(2016),「105 年莫蘭蒂颱風重大土砂災例摘要報告」,行政院農業委員會。
  14. 青山工程顧問股份有限公司(2016)。,行政院農業委員會水土保持局。
  15. 國土技術政策總合研究所(2016)。砂防基本計画策定指針(土石流‧流木對策編)解說。國總研資料,904,25-28。
  16. 許汶芳(2022)。國立成功大學水利及海洋工程學系。
  17. 詹錢登(2000).土石流概論.科技圖書股份有限公司.
  18. 詹錢登(2018).泥沙運行學.五南圖書股份有限公司.
  19. 詹錢登,蕭凱文,徐郁超,曾國訓(2015)。應用 FLO-2D 與Debris 2D 模擬羌黃坑集水區內土石流流動特性差異之研究。中華防災學刊,7(2)
  20. 蔡元芳(1999)。國立成功大學水利及海洋工程學系研究所。
  21. 賴承農,鍾佩蓉,陳盈守,陳振宇(2011)。探討土石流堆積物分布範圍與體積濃度推算之關係。第二十屆水利工程研討會