题名

應用人工智慧模組於流域集水區之雷達極化判釋

DOI

10.6653/MoCICHE.202310_50(5).0004

作者

陳奕中;陳柔妃;郭志禹

关键词
期刊名称

土木水利

卷期/出版年月

50卷5期(2023 / 10 / 01)

页次

18 - 26

内容语文

繁體中文

中文摘要

自從人工智慧圍棋程式「AlphaGo」屢屢戰勝棋王後,類神經網路以及深度學習技術成為眾所矚目的焦點。深度學習在遙感領域的應用日益廣泛,以目標物識別、土地覆被分類以及地表變異偵測等研究為主,利用機器學習工具發展不同影像來源之影像數據訓練,以做為進行廣域快速地表特徵變異之利器。隨著全球氣候變遷、極端災害事件頻傳,臺灣位於亞熱帶季風區、活躍的造山帶且地質材料破碎,經年累月受到颱風及地震等之自然災害侵襲,劇烈的地表作用造成大規模崩塌災害產生。為此,學術界以及相關主管機關長期投入坡地崩塌事件資料蒐集、致災因子評估與地質模型建置等工作,累積颱風、豪雨事件前後大量地表變異資料,提供深度學習在自動化崩塌判釋最佳之範例。本研究以旗山溪集水區為研究範圍,整合ALOS雷達與福衛光學影像,利用卷積神經網路學習工具進行自動化崩塌判釋。以莫拉克災前後光達數值地形,搭配福衛二號影像與航空照片,進行潛在大規模崩塌地形特徵判釋。配合卷積神經網路工具進行研究區域已發生之大規模崩塌區位目錄,進行福衛2號大規模崩塌之影像數據訓練。此外,利用日本太空總署ALOS/PALSAR衛星雷達雙偏極HH和HV影像,強化目標物在不同偏極電磁波之辨識能力,配合前述福衛2號判釋成果以及崩塌前後量體建立山崩面積-體積經驗迴歸公式,進行旗山溪流域地表變異分析。本研究成果包括:(1)旗山溪流域福衛2號光學影像崩塌事件判釋成果與崩塌區位目錄;(2)旗山溪流域ALOS雷達影像崩塌事件判釋成果與崩塌區位目錄;(3)建立旗山溪流域歷次崩塌事件之卷積神經網路地表變異識別模式及圖像訓練資料庫。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. 郭志禹,詹雅馨,蔡碧紋,陳柔妃,戴義欽,林慶偉(2019)。應用崩塌體積與最小平滑曲面法建構三維深層崩塌之近似破壞面。中華水土保持學報,50,143-153。
    連結:
  2. 日本 JAXA 網站 https://global.jaxa.jp/.
  3. Agliardi, F.,Crosta, G.,Zanchi, A.(2001).Structural constraints on deep-seated slope deformation kinematics.Engineering Geology,59,83-102.
  4. Akbari, V.,Doulgeris, A.P.,Eltoft, T.(2016).Post-classification Change Detection in Arctic Glaciers by Multi-polarization SAR.Multitemporal Remote Sensing
  5. Capodici, F.,Maltese, A.,Ciraolo, G.,D’Urso, G.,La Loggia, G.(2017).“Power Sensitivity Analysis of Multi-Frequency, MultiPolarized,” Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization.Remote Sensing,9(7),677.
  6. Cardinali, M.,Paola, R.,Guzzetti, F.,Ardizzone, F.,Antonini, G.,Galli, M.,Cacciano, M.,Castellani,M,Salvati, P.(2002).A geomorphological approach to the estimation of landslide hazards and risks in Umbria.Central Italy Natural Hazards Earth Sys. Sci.,2,57-72.
  7. Chen, L.(2021).Deep learning and practice with mindspore.Springer Nature.
  8. Chigira, M.(2009).“September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations,”Kyushu, southern Japan.Engineering Geology,108,1-15.
  9. Chigira, M.,Duan, F.,Yagi, H.,Furuya, T.(2004).Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics.Landslides,1,203-209.
  10. Chigira, M.,Kiho, K.(1994).“Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains,” central Japan.Engineering Geology,38,221-230.
  11. Crosta, G.B.,Frattini, P.,Agliardi, F.(2013).Deep seated gravitational slope deformations in the European Alps.Tectonophysics
  12. Dellepiane, S.,Bo, G.,Monni, S.,Buck, C.(2000).SAR images and interferometric coherence for flood monitoring.IGARSS 2000.” IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120)
  13. Ding, A.,Zhang, Q.,Zhou, X.,Dai, B.(2016).Automatic recognition of landslide based on CNN and texture change detection.2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC)
  14. Freeman, A.,Durden, S.L.(1998).A three-component scattering model for polarimetric SAR data.IEEE transactions on geoscience and remote sensing,36(3),963-973.
  15. Freeman, A.,Shen, Y.,Werner, C.L.(1990).Polarimetric SAR calibration experiment using active radar calibrators.IEEE Transactions on geoscience and remote sensing,28(2),224-240.
  16. Ghorbanzadeh, O.,Blaschke, T.,Gholamnia, K.,Meena, S.R.,Tiede, D.,Aryal, J.(2019).Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection.Remote Sensing,11(2),196.
  17. Glenn, N.F.,Streutker, D.R.,Chadwick, D.J.,Thackray, G.D.,Dorsch, S.J.(2006).Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity.Geomorphology,73,131-148.
  18. Guzzetti, F.,Ardizzone, F.,Cardinali, M.R.M.,Valigi, D.(2009).Landslide volumes and landslide mobilization rates in Umbria.Central Italy. Earth Planet. Sci. Lett.,279(3),222-229.
  19. Hyyppä, J.,Hyyppä, H.,Inkinen, M.,Engdahl, M.,Linko, S.,Zhu, Y.H.(2000).Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes.Forest Ecology and Management,128(1),109-120.
  20. Jayawardana, R.,Bandaranayake, T.S.(2021).Analysis of optimizing neural networks and artificial intelligent models for guidance, control, and navigation systems.International Research Journal of Modernization in Engineering, Technology and Science,3(3),743-759.
  21. Kim, Y.(2014).,未出版
  22. Klar, A.,Aharonov, E.,Kalderon-Asael, B.,Katz, O.(2011).Analytical and observational relations between landslide volume and surface area.J. Geophys. Res.,116,F02001.
  23. Krizhevsky, A.,Sutskever, I.,Hinton, G.E.(2012).Imagenet classification with deep convolutional neural networks.Advances in neural information processing systems
  24. Kuo, C.Y.,Tsai, P.W.,Tai, Y.C.,Chan, Y.H.,Chen, R.F.,Lin, C.W.(2020).Application assessments of using scarp boundary-fitted, volume constrained, smooth minimal surfaces as failure interfaces of deep-seated landslides.Frontiers in Earth Science,8,211.
  25. Matsuoka, M.,Yamazaki, F.(2004).Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes.Earthquake Spectra,20(3),975-994.
  26. Moreira, A.,Krieger, G.,Hajnsek, I.,Papathanassiou, K.,Younis, M.,Lopez-Dekker, P.,De Zan, F.(2015).Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface.IEEE Geoscience and Remote Sensing Magazine,3(2),8-23.
  27. Pedrazzini, A.,Jaboyedoff, M.,Loye, A.,Derron, M.-H.(2013).From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland).Tectonophysics
  28. Taheri, R.,Ahmed, H.,Arslan, E.(2023).Deep learning for the security of software-defined networks: a review.Cluster Computing,26(5),3089-3112.
  29. Tarolli, P.,Sofia, G.,Dalla Fontana, G.(2012).Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion.Natural Hazards,61,65-83.
  30. Varnes, D.J.(1978).,Transportation Research Board.
  31. Vedaldi, A.,Lenc, K.(2015).Matconvnet: Convolutional neural networks for matlab.Proceedings of the 23rd ACM international conference on Multimedia
  32. 日本國土交通省土木研究所(2010)。深層崩 の発生の恐れのある 流抽出マニュアル
  33. 地調所(2016)。地調所(2016),應用大規模崩塌活動性與發生度整合資訊於山崩與地滑地質敏感區劃定成果報告,經濟部中央地質調查所。
  34. 林正杰(2012)。國立成功大學環境工程學系。
  35. 林家慶(2007)。國立成功大學地球科學系。
  36. 林恩如,劉正千,張智華,鄭依凡,柯明勳(2013)。運用福衛二號高時空分辨率多光譜影像於台灣全島崩塌地判釋與災害分析。航測及遙測學刊,17(1),31-51。
  37. 林慶偉(2009)。政院國家科學委員會專題研究計畫成果報告政院國家科學委員會專題研究計畫成果報告,未出版
  38. 郭芳君(2014)。國立中央大學應用地質研究所。
  39. 陳婉君(2014)。國立中興大學土木工程學系所。
  40. 劉正千,張智華,許華宇,譚子健,溫清光(2007)。應用 ISIS 高頻譜光學遙測影像於曾文水庫之水質監測。科儀新知,161,29-42。
  41. 劉守恆,林慶偉(2004)。SPOT 衛星影像之崩塌地自動分類研究。航測及遙測學刊,9(2),9-22。