题名

利用邊坡活動性反演崩塌滑動面幾何型態

DOI

10.6653/MoCICHE.202310_50(5).0005

作者

林冠瑋;劉哲欣;張志新;郭賢立

关键词
期刊名称

土木水利

卷期/出版年月

50卷5期(2023 / 10 / 01)

页次

27 - 31

内容语文

繁體中文

中文摘要

本研究整合了數位影像相關法(DIC)與崩塌厚度反演方法,以分析桃園光華崩塌的滑動面幾何型態。反演所獲得的厚度模型進而可用於計算體積、流變性和滑動面形狀。兩期UAV正射影像的DIC分析結果顯示2021年3月至8月底,光華崩塌的地表水平位移最大值為39.7公尺,平均值為7.8公尺,與GPS觀測結果大致相符。此外,將DIC分析的水平位移分解,顯示光華崩塌以向東位移為主。為了反演崩塌厚度,使用了2023年3月1日和8月17日的兩期數值地型模型,結果可提供三維滑動面幾何型態,進而估算崩塌塊體體積。光華崩塌的活動塊體最大深度為54公尺,體積約58.5萬立方公尺。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
参考文献
  1. Ali, E.,Xu, W.,Ding, X.(2020).Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation.ISPRS Journal of Photogrammetry and Remote Sensing,66,106-124.
  2. Bishop, K.M.(1999).Determination of translational landslide slip surface depth using balanced cross sections.Environ. Eng. Geosci.,2,147-156.
  3. Bontemps, N.,Lacroix, P.,Marie-Pierre, D.(2018).Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru.Remote Sensing of Environment,210,144-158.
  4. Booth, A.M.,Lamb, M.P.,Avouac, J.,Delacourt, C.(2013).Landslide Velocity, Thickness, and Rheology from Remote Sensing; La Clapiere Landslide, France.Geophysical Research Letters,40(16),4299-4304.
  5. Caporossi, P.,Mazzanti, P.,Bozzano, F.(2018).Digital Image Correlation (DIC) Analysis of the December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation.ISPRS Int. J. Geo-Inf,7,372.
  6. Carter, M.,Bentley, S.P.(1985).The geometry of slip surfaces beneath landslides: Predictions from surface measurements.Can. Geotech. J.,22,234-238.
  7. Delbridge B.G.,Bürgmann, R.,Fielding, E.,Hensley, S.,Schulz, W.H.(2016).Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide.Journal of geophysical research,121(5),3951-3977.
  8. Farinotti, D.,Huss, M.,Bauder, A.,Funk, M.,Truffer, M.(2009).A method to estimate the ice volume and ice-thickness distribution of alpine glaciers.J. Glaciol.,55(191),422-430.
  9. Handwerger, A.L.,Fielding, E.J.,Sangha, S.S.,Bekaert, P.S.(2022).Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates.Geophysical research letters,49(13)
  10. Hu, X.,Lu, Z.,Pierson, T.C.,Kramer, R.,George, D.L.(2018).Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low gradient translational landslide.Geophysical Research Letters,45,1453-1462.
  11. Jakob, M.(2005).A size classification for debris flows.Eng. Geol,79(3),151-161.
  12. Mazzanti, P.,Caporossi, P.,Muzi, R.(2020).Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for landslide Monitoring: The Rattlesnake Hills Landslide (USA).Remote Sens,12,592.
  13. Morlighem, M.,Rignot, E.,Seroussi, H.,Larour, E.,Ben Dhia, H.,Aubry, D.(2011).A mass conservation approach for mapping glacier ice thickness.Geophys. Res. Lett.,38,L19503.
  14. Türk, T.(2018).Determination of mass movements in slow-motion landslides by the Cosi-Corr method.Geomatics, Natural Hazards and Risk,9(1),325-336.
  15. von Ruette, J.,Lehmann, P.,Or, D.(2016).Linking rainfallinduced landslides with predictions of debris flow runout distances.Landslides,13,1097-1107.