题名

人工智慧於冠狀動脈疾病的應用

DOI

10.6666/ClinMed.202102_87(2).0013

作者

李穎灝;張俊欽;黃柏勳

关键词

人工智慧(artificial intelligence) ; 機器學習(machine learning) ; 冠狀動脈疾病(coronary artery disease)

期刊名称

臨床醫學月刊

卷期/出版年月

87卷2期(2021 / 02 / 26)

页次

88 - 91

内容语文

繁體中文

中文摘要

隨著人工智慧的進展與醫療領域的相互結合,運用人工智慧來輔助醫療診斷、風險評估、醫學影像分析和治療決策的擬定,近年來如雨後春筍般的蓬勃發展。冠狀動脈疾病目前仍在國人主要十大死因之中,冠狀動脈疾病在診斷與治療方面,臨床上皆有賴於各種醫療影像來輔助判斷與提供治療處置,包含心電圖、心肌灌注掃描、冠狀動脈電腦斷層與血管腔內影像,本篇文章將回顧與介紹目前人工智慧在冠狀動脈疾病的臨床應用與最新發展。

主题分类 醫藥衛生 > 基礎醫學
醫藥衛生 > 社會醫學
参考文献
  1. Arsanjani, R,Dey, D,Khachatryan, T(2015).Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.J Nucl Cardiol,22,877-884.
  2. Barbagelata, A,Bethea, CF,Severance, HW(2018).Smartphone ECG for evaluation of ST-segment elevation myocardial infarction(STEMI): Design of the ST LEUIS International Multicenter Study.J Electrocardiol,51,260-264.
  3. Cano-Espinosa, C,González, G,Washko, GR(2018).Automated Agatston score computation in non-ECG gated CT scans using deep learning.Proc SPIE Int Soc Opt Eng,10574,105742K.
  4. Chan, J,Rea, T,Gollakota, S(2019).Contactless Cardiac Arrest Detection Using Smart Devices.NPJ Digit Med,2,52.
  5. Coenen, A,Kim, YH,Kruk, M(2018).Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve.Circ Cardiovasc,11,e007217.
  6. Driessen, RS,Raijmakers, PG,Danad, I(2018).Automated SPECT analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease.Eur J Nucl Med Mol Imaging,45,1091-1100.
  7. Isgum, I,Prokop, M,Niemeijer, M(2012).Automatic Coronary Calcium Scoring in Low-Dose Chest Computed Tomography.IEEE Trans. Med Imaging,31,2322-2334.
  8. Koo, BK,Erglis, A,Doh, JH(2011).Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms.J Am Coll Cardiol,58,1989-1997.
  9. Mannil, M,von Spiczak, J,Manka, R(2018).Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography.Invest Radiol,53,338-343.
  10. Min, HS,Yoo, JH,Kang, SJ(2020).Detection of optical coherence tomography-defined thin-cap fibroatheroma in the coronary artery using deep learning.EuroIntervention,16,404-412.
  11. Motwani, M,Dey, D,Berman, DS(2017).Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.Eur Heart J,38,500-507.
  12. Myers, PD,Scirica, BM,Stultz, CM(2017).Machine Learning Improves Risk Stratification After Acute Coronary Syndrome.Sci Rep,7,12692.
  13. Nakajima, K,Okuda, K,Watanabe, S(2018).Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database.Ann Nucl Med,32,303-310.
  14. Nørgaard, BL,Leipsic, J,Gaur, S(2014).Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease.J Am Coll Cardiol,63,1145-1155.
  15. O'Gara, PT,Kushner, FG,Ascheim, DD(2013).2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction.J Am Coll Cardiol,61,e78-e140.
  16. Sakellarios, A,Tachos, N,Georga, E(2019).A Novel Concept of the Management of Coronary Artery Disease Patients Based on Machine Learning Risk Stratification and Computational Biomechanics: Preliminary Results of SMARTool Project.IFMBE Proceedings,68,629-633.
  17. VanHouten, JP,Starmer, JM,Lorenzi, NM(2014).Machine learning for risk prediction of acute coronary syndrome.AMIA Annu Symp Proc,2014,1940-1949.
  18. Wolterink, JM,Leiner, T,de Vos, BD(2016).Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.Med. Image Anal,34,123-136.
  19. Xiao, R,Xu, Y,Pelter, MM(2018).A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.AMIA Jt Summits Transl Sci Proc,2017,256-262.
  20. Yong, YL,Tan, LK,McLaughlin, RA(2017).Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.J Biomed Opt,22,1-9.
  21. Zack, CJ,Senecal, C,Kinar, Y(2019).Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.JACC Cardiovasc Interv,12,1304-1311.
被引用次数
  1. (2024)。AI時代自主健康管理之實踐。管理資訊計算,13(2),95-110。