参考文献
|
-
Arsanjani, R,Dey, D,Khachatryan, T(2015).Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.J Nucl Cardiol,22,877-884.
-
Barbagelata, A,Bethea, CF,Severance, HW(2018).Smartphone ECG for evaluation of ST-segment elevation myocardial infarction(STEMI): Design of the ST LEUIS International Multicenter Study.J Electrocardiol,51,260-264.
-
Cano-Espinosa, C,González, G,Washko, GR(2018).Automated Agatston score computation in non-ECG gated CT scans using deep learning.Proc SPIE Int Soc Opt Eng,10574,105742K.
-
Chan, J,Rea, T,Gollakota, S(2019).Contactless Cardiac Arrest Detection Using Smart Devices.NPJ Digit Med,2,52.
-
Coenen, A,Kim, YH,Kruk, M(2018).Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve.Circ Cardiovasc,11,e007217.
-
Driessen, RS,Raijmakers, PG,Danad, I(2018).Automated SPECT analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease.Eur J Nucl Med Mol Imaging,45,1091-1100.
-
Isgum, I,Prokop, M,Niemeijer, M(2012).Automatic Coronary Calcium Scoring in Low-Dose Chest Computed Tomography.IEEE Trans. Med Imaging,31,2322-2334.
-
Koo, BK,Erglis, A,Doh, JH(2011).Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms.J Am Coll Cardiol,58,1989-1997.
-
Mannil, M,von Spiczak, J,Manka, R(2018).Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography.Invest Radiol,53,338-343.
-
Min, HS,Yoo, JH,Kang, SJ(2020).Detection of optical coherence tomography-defined thin-cap fibroatheroma in the coronary artery using deep learning.EuroIntervention,16,404-412.
-
Motwani, M,Dey, D,Berman, DS(2017).Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.Eur Heart J,38,500-507.
-
Myers, PD,Scirica, BM,Stultz, CM(2017).Machine Learning Improves Risk Stratification After Acute Coronary Syndrome.Sci Rep,7,12692.
-
Nakajima, K,Okuda, K,Watanabe, S(2018).Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database.Ann Nucl Med,32,303-310.
-
Nørgaard, BL,Leipsic, J,Gaur, S(2014).Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease.J Am Coll Cardiol,63,1145-1155.
-
O'Gara, PT,Kushner, FG,Ascheim, DD(2013).2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction.J Am Coll Cardiol,61,e78-e140.
-
Sakellarios, A,Tachos, N,Georga, E(2019).A Novel Concept of the Management of Coronary Artery Disease Patients Based on Machine Learning Risk Stratification and Computational Biomechanics: Preliminary Results of SMARTool Project.IFMBE Proceedings,68,629-633.
-
VanHouten, JP,Starmer, JM,Lorenzi, NM(2014).Machine learning for risk prediction of acute coronary syndrome.AMIA Annu Symp Proc,2014,1940-1949.
-
Wolterink, JM,Leiner, T,de Vos, BD(2016).Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.Med. Image Anal,34,123-136.
-
Xiao, R,Xu, Y,Pelter, MM(2018).A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.AMIA Jt Summits Transl Sci Proc,2017,256-262.
-
Yong, YL,Tan, LK,McLaughlin, RA(2017).Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.J Biomed Opt,22,1-9.
-
Zack, CJ,Senecal, C,Kinar, Y(2019).Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.JACC Cardiovasc Interv,12,1304-1311.
|