题名

人工智慧於心臟衰竭的應用

DOI

10.6666/ClinMed.202102_87(2).0014

作者

李穎灝;鄭浩民

关键词

人工智慧(artificial intelligence) ; 機器學習(machine learning) ; 心臟衰竭(heart failure)

期刊名称

臨床醫學月刊

卷期/出版年月

87卷2期(2021 / 02 / 26)

页次

92 - 96

内容语文

繁體中文

中文摘要

在高齡化的社會裡,心臟衰竭已經是一種流行病,也是所有高齡化國家的重要公衛課題。現有心臟衰竭病人的照護模式仍存在許多改善的空間。對於心臟衰竭的風險、預測及治療成效的追蹤都需要大數據的分析,而人工智慧正適合處理這些錯綜複雜的因果關係。無論是心臟衰竭的預防、預防心臟衰竭病患再住院、心臟衰竭病患的疾病管理、甚至是心臟衰竭病生理機轉的探討,都有可能藉由人工智慧得到進一步的改善與解答。

主题分类 醫藥衛生 > 基礎醫學
醫藥衛生 > 社會醫學
参考文献
  1. AbouEzzeddine, OF,McKie, PM,Scott, CG(2016).Biomarker-based risk prediction in the community.Eur J Heart Fail,18,1342-1350.
  2. Ahmad, T,Pencina, MJ,Schulte, PJ(2014).Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis.J Am Coll Cardiol,64,1765-1774.
  3. Benjamin, EJ,Virani, SS,Callaway, CW(2018).Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association.Circulation,137,e67-e492.
  4. Cikes, M,Sanchez-Martinez, S,Claggett, B(2019).Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.Eur J Heart Fail,21,74-85.
  5. Deo, RC(2015).Machine Learning in Medicine.Circulation,132,1920-1930.
  6. Deo, RC,Nallamothu, BK(2016).Learning About Machine Learning: The Promise and Pitfalls of Big Data and the Electronic Health Record.Circ Cardiovasc Qual Outcomes,9,618-620.
  7. Dickinson, MG,Allen, LA,Albert, NA(2018).Remote Monitoring of Patients With Heart Failure: A White Paper From the Heart Failure Society of America Scientific Statements Committee.J Card Fail,24,682-694.
  8. Echouffo-Tcheugui, JB,Greene, SJ,Papadimitriou, L(2015).Population Risk Prediction Models for Incident Heart Failure.Circ Hear Fail,8,438-447.
  9. Futoma, J,Morris, J,Lucas, J(2015).A comparison of models for predicting early hospital readmissions.J Biomed Inform,56,229-238.
  10. Golas, SB,Shibahara, T,Agboola, S(2018).A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.BMC Med Inform Decis Mak,18,44.
  11. Greene, SJ,Butler, J,Albert, NM(2018).Medical Therapy for Heart Failure With Reduced Ejection Fraction.J Am Coll Cardiol,72,351-366.
  12. Groeneveld, PW,Rumsfeld, JS(2016).Can Big Data Fulfill Its Promise?.Circ Cardiovasc Qual Outcomes,9,679-682.
  13. Gupta, A,Fonarow, GC(2018).The Hospital Readmissions Reduction Program-learning from failure of a healthcare policy.European Journal of Heart Failure,20,1169-1174.
  14. Kalscheur, MM,Kipp, RT,Tattersall, MC(2018).Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes.Circ Arrhythmia Electrophysiol,11,e005499.
  15. Lopez-Jimenez, F,Attia, Z,Arruda-Olson, AM(2020).Artificial Intelligence in Cardiology: Present and Future.Mayo Clin Proc,95,1015-1039.
  16. Mortazavi, BJ,Downing, NS,Bucholz, EM(2016).Analysis of Machine Learning Techniques for Heart Failure Readmissions.Circ Cardiovasc Qual Outcomes,9,629-640.
  17. Ng, K,Steinhubl, SR,DeFilippi, C(2016).Early Detection of Heart Failure Using Electronic Health Records.Circ Cardiovasc Qual Outcomes,9,649-658.
  18. Ponikowski, P,Voors, AA,Anker, SD(2016).2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur J Heart Fail,18,891-975.
  19. Shah, SJ,Katz, DH,Selvaraj, S(2015).Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction.Circulation,131,269-279.
  20. Yancy, CW,Jessup, M,Bozkurt, B(2017).2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer.Circulation,136,e137-e161.