题名

人工智慧機器學習在重症照護單位的應用

DOI

10.6666/ClinMed.202102_87(2).0015

作者

盧紀婷;周睿信;林祐霆;黃柏勳

关键词

人工智慧(artificial intelligence) ; 機器學習(machine learning) ; 波型分析(waveform analysis) ; 重症照護單位(intensive care unit)

期刊名称

臨床醫學月刊

卷期/出版年月

87卷2期(2021 / 02 / 26)

页次

97 - 106

内容语文

繁體中文

中文摘要

人工智慧此一概念提出後已經歷半個世紀,近年來人工智慧更乘著機器學習及深度學習的名目蓬勃發展。人工智慧應用於心血管疾病和重症病人的數據資料分析是一個持續進展的領域,隨著生物資訊學的進展,有越來越多利用人工智慧和機器學習建置的模型,用來預測重症病患心律不整、急性腎損傷、敗血症、休克等不良事件的發生率。在加護病房,我們會常規使用生理監測儀器監測重症病人的心電圖、血壓、血氧濃度等波型訊號。傳統上我們會將連續性的波型訊號轉換或截取為數值資料加以紀錄,用來判斷病人的病情變化。目前已知的人工智慧的預測模型,大多是輸入數值型資料或是圖形,以監督式機器學習的方式來建構預測模型。這會忽略部分細微和早期的波型變化,殊為可惜。在重症醫學領域,輸入和分析波型數據資料的人工智慧模型仍非常稀少。本文將概述人工智慧應用於重症病人的現況,並簡介非監督式流型波型數據分析此一最新的生理訊號波型分析方法。

主题分类 醫藥衛生 > 基礎醫學
醫藥衛生 > 社會醫學
参考文献
  1. Awad, A,Bader-El-Den, M,McNicholas, J(2020).Predicting hospital mortality for intensive care unit patients: time-series analysis.Health Informatics J,26,1043-1059.
  2. Awad, A,Bader-El-Den, M,McNicholas, J(2017).Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.Int J Med Inform,108,185-195.
  3. Banerjee, I,Sofela, M,Yang, J(2019).Development and performance of the pulmonary embolism result forecast model(PERFORM) for computed tomography clinical decision support.JAMA Netw Open,2,e198719.
  4. Beam, AL,Kohane, IS(2018).Big data and machine learning in health care.JAMA,319,1317-1318.
  5. Choi, E,Schuetz, A,Stweart, WF(2017).Using recurrent neural network models for early detection of heart failure onset.J Am Med Inform Assoc,24,361-370.
  6. Escobar, GJ,Turk, BJ(2016).Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals.J Hosp Med,11,S18-S24.
  7. Flechet, M,Falini, S,Bonetti, C(2019).Machine learning versus physicians´ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKI predictor.Crit Care,23,282.
  8. Giannini, HM,Ginestra, JC,Chivers, C(2019).A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice.Crit Care Med,47,1485-1492.
  9. Goodfellow, Ian J.,Pouget-Abadie, Jean,Mirza, Mehdi(2014).Generative adversarial nets.NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems 2014
  10. Gottfredson, LS(1997).Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography.Intelligence,24,13-23.
  11. Gutierrez, Guillermo(2020).Artificial Intelligence in the Intensive Care Unit.Crit Care,24,101-109.
  12. Haenlein, M,Kaplan, A(2019).A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence.California Management Review,61,5-14.
  13. Hastie, Trevor,Tibshirani, Robert,Friedman, Jerome(2009).The Elements of Statistical Learning: Data Mining, Inference, and Prediction.Springer-Verlag.
  14. Hodge, Victoria J.,Austin, Jim(2004).A Survey of Outlier Detection Methodologies.Artificial Intelligence Review,22,85-126.
  15. Holmgren, G,Andersson, P,Jakobsson, A(2019).Artificial neural networks improve and simplify intensive care mortality prognostication: a national cohort study of 217,289 first-time intensive care unit admissions.J Intensive Care,7,44.
  16. Hosny, A,Parmar, C,Quackenbush, J(2018).Artificial intelligence in radiology.Nat Rev Cancer,18,500-510.
  17. Houthooft, R,Ruyssinck, J,van der Herten, J(2015).Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores.Artif Intell Med,63,191-207.
  18. Johnson, A,Pollard, T,Shen, L(2016).MIMIC-IIIfreely accessible critical care database.Sci Data,3,160035.
  19. Kassahun, Y,Yu, B,Tibebu, AT(2016).Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.Int J Comput Assist Radiol Surg,11,553-568.
  20. Kim, SY,Kim, S,Cho, J(2019).A deep learning model for real-time mortality prediction in critically ill children.Crit Care,23,279.
  21. Komorowski, Matthieu,Celi, Leo A,Badaw, Omar(2018).The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.Nat Med,24,1716-1720.
  22. LeCun, Yann,Bengio, Yoshua,Hinton, Geoffrey(2015).Deep Learning.Nature,521,436-444.
  23. Li, BY,Young, VB,Rao, K,Wiens, J(2019).Using machine learning and the electronic health record to predict complicated Clostridium difficile infection.Open Forum Infect Dis,6,ofz186.
  24. Lin, YW,Zhou, Y,Faghri, F(2019).Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with lon short term memory.PLoS One,14,e0218942.
  25. Litjens, G,Sánchez, CI,Timofeeva, N(2016).Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis.Sci Rep,6,26286.
  26. McCorduck, Pamela,Cfe, Cli(2014).Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence.CRC Press.
  27. Mnih, Volodymyr,Kavukcuoglu, Koray,Silver, David.,未出版
  28. Moore, Gordon E.(1965).Cramming more components onto integrated circuits.Electronics,38
  29. Muensterman, Elena Tomaselli,Tisdale, James E.(2018).Predictive Analytics for Identification of Patients at Risk for QT Interval Prolongation: A Systematic Review.Pharmacotherapy,38,813-821.
  30. Nassar, AP., Jr.,Caruso, P.(2006).ICU physicians are unable to accurately predict length of stay at admission: a prospective study.Int J Quat Health Care,1,99-103.
  31. Rau, CS,Wu, SC,Chuang, JF(2019).Machine learning models of survival prediction in trauma patients.J Clin Med,8,799.
  32. Seymour, Christopher W,Kennedy, Jason N,Wang, Shu(2019).Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis.JAMA,321,2003-2017.
  33. Shillan, Duncan,Sterne, Jonathan A C,Champneys, Alan(2019).Use of machine learning to analyse routinely collected intensive care unit data: a systematic review.Crit Care,23,284-294.
  34. Tang, TT,Zawaski, JA,Francis, KN(2019).Image-based classification of tumor type and growth rate using machine learning: a preclinical study.Sci Rep,9,12529.
  35. Tran, NK,Sen, S,Palmieri, TL(2019).Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: a proof of concept.Burns,45,1350-1358.
  36. Vistisen, ST,Johnson, AEW,Scheeren, TWL(2019).Predicting vital sign deterioration with artificial intelligence or machine learning.J Clin Monit Comput,33,949-951.
  37. Wang, SC,Wu, HT,Huang, PH(2020).Novel imaging revealing inner dynamics for cardiovascular waveform analysis via unsupervised manifold learning.Anesth Analg,130,1244-1254.
  38. Wohlfahrt, P,Melenovsky, V,Redfield, MM(2017).Aortic waveform analysis to individualize treatment in heart failure.Circ Heart Fail,10,e003516.
  39. Yoon, JH,Mu, L,Chen, L(2019).Predicting tachycardia as a surrogate for instability in the intensive care unit.J Clin Monit Comput,33,973-998.
  40. Zeiberg, D,Prahlad, T,Nallamothu, BK(2019).Machine learning for patient risk stratification for acute respiratory distress syndrome.PLoS One,14,e0214465.
  41. Zhang, Z,Ho, KM,Hong, Y(2019).Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care.Crit Care,23,112.
  42. Zimek, Arthur,Schubert, Erich,Kriegel, Hans‐Peter(2012).A survey on unsupervised outlier detection in high-dimensional numerical data.Statistical Analysis and Data Mining,5,363-387.
被引用次数
  1. 林國欽(2022)。人工智慧於體育運動領域之發展與運用。體育學報,55(3),233-244。
  2. (2023)。建構智慧型居家安全警示系統之可行性研究。臺北海洋科技大學學報,14(2),25-38。