题名

綠屋頂容器盆壁開孔率對介質溫度之影響

并列篇名

The effect of container open porosity on substrate temperature in green roofs

作者

方智芳(Chih-Fang Fang)

关键词

蒸發作用 ; 生態屋頂 ; 不織布容器 ; 根溫 ; 熱傳導 ; ecological roof ; evaporation ; non-woven container ; root zone temperature ; thermal conductivity

期刊名称

造園景觀學報

卷期/出版年月

21卷3期(2016 / 10 / 01)

页次

25 - 44

内容语文

繁體中文

中文摘要

以塑膠容器作為綠屋頂的材料,具備耐用、質輕、經濟等優點。然而塑膠容器易導致介質的高溫而影響植物生長。如能在塑膠容器表面開設孔洞,可降低介質溫度,將有利於植物生長。因此本研究目的旨在探討塑膠容器的開孔率對介質溫度的影響。以不織布容器(開孔率P100%)及塑膠容器三種開孔率(P40%, P20%及P0%)為處理,在介質表層、表層以下5cm、10cm及15cm設置熱耦線,紀錄62天的介質溫度變化。結果顯示溫度分佈可分為兩群,群I為P100%及P0%,群II為P40%及P20%。群I高於群II 0.51∼ 2.02℃。開孔率100%及0%的容器在5 cm及10 cm處,各有一天超過根部的適生臨界溫度37.8℃。建議塑膠容器有適當的開孔率將可有效降低介質溫度。

英文摘要

Plastic containers are durable, light and inexpensive when used in green roofs . However, plastic containers produce high substrate temperatures that can injure plant growth. A porous container wall may promote the plant growth. Therefore, this study clarifies the relationship between container porosity and the substrate temperature. Four treatments were used, with porosities of 100%, 40%, 20% and 0% (P100%, P40%, P20% and P0%). Thermal couples were set up at the substrate surface, under substrate of 5 cm, 10 cm and 15 cm. The temperature in the substrate was recorded from Aug, 04, 2015 to Oct, 04, 2015. It revealed that the substrate temperatures were divided into two groups. Group I were P100% and P0%, group II were P40% and P20%. The substrate temperature of group I were higher than group II 0.51∼2.02℃. Thus, an adaptive porosity of P40% or P20%, for example, can reduce substrate temperature effectively.

主题分类 人文學 > 地理及區域研究
工程學 > 市政與環境工程
参考文献
  1. Kramer, P. J. (1949). Plant and soil water relationships. McGraw Hill, New York, NY.
  2. Appleton, B.(2001).Past and future containers.Nursery Mgt. Prod,17(10),71-76.
  3. Beattie, D. J.,Berghage, R.,Puri, V.,Biddinger, E.(1987).Plant growth thrives on a high fiber diet: The pros and cons of fiber containers for nursery growing.Nursery Mgt. Prod,15(3),81-83.
  4. Beradtsson, J. C.(2010).Green roof performance towards management of runoff water quantity and quality: a review.Ecological Engineering,36(4),351-360.
  5. Bunt, A. C.,Kulwiec, Z. J.(1970).The effect of container porosity on root environment and plant growth I.Temperature. Plant and soil,32(1),65-80.
  6. Chen, H. H.,Shen, Z. Y.,Li, P. H.(1982).Adaptability of crop plants to high temperature stress.Corp science,22(4),719-725.
  7. Coma, J.,Perez, G.,Sole, C.,Castell, A.,Cabeza, L. F.(2016).Thermal assessment of extensive green roofs as passive tool for energy savings in buildings.Renewable energy,85,1106-1115.
  8. Diaz-Perez, J. C.(2009).Root zone temperature, plant growth and yield of broccoli [Brassica oleracea(Plenck) var. italica] as affected by plastic film mulches.ScientiaHorticulturae,123(2),156-163.
  9. Foster, W. J.,Ingram, D. L.,Nell, T. A.(1991).Photosynthesis and root respiration in Ilex crenata 'Rotundifolia' at supraoptimal root-zone temperatures.HortScience,26(5),535-537.
  10. Harazono, Y.,Teraoka, S.,Nakose, I.,Ikeda, H.(1991).Effect of rooftop vegetation using artificial substrates on the urban climate and thermal load of building.Energy and building,15(3-4),435-442.
  11. Ingram, D. L.(1986).Root cell membrane heat tolerance of two dwarf holies.J. Amer. Soc. Hort. Sci,111(2),270-272.
  12. Ingram, D. L.,Ruter, J. M.,Martin, C. A.(2015).Review: Characterization and impact of supraoptimal root-zone temperature in container-grown plants.HortScience,50(4),530-539.
  13. Ingram, D. L.,Webb, D.,Biggs, H.(1986).Interactions of exposure time and temperature on thermostability and protein content of excised. Illicium parviflorum roots.Plant Soil,96(1),69-76.
  14. Johnson, C. R.,Ingram, D. L.(1984).Pittisporum tobira response to container medium temperature.HortScience,19(4),524-525.
  15. Lazzarin, R. M.,Castellotti, F.,Busato, F.(2005).Experimental measurements and numerical modeling of a green roof.Energy and Buildings,37(12),1260-1267.
  16. Li, Y. L.,Babcock, R. W.(2014).Green roof hydrologic performance and modeling: a review.Water Science and Technology,69(4),727-738.
  17. Maclvor, J. S.,Lundholm, J.(2011).Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats.Urban ecosystems,14(2),225-241.
  18. Martin, C. A.,Ingram, D. L.(1992).Simulation modeling of temperatures in root container media.J. Amer. Soc. Hort. Sci,117(4),571-577.
  19. Mathers, H. M.(2003).Summary of temperature stress issues in nursery container and current methods of protection.HortTechology,13(4),617-624.
  20. Nambuthiri, S.,Fulcher, A.,Koeser, A. K.,Geneve, R.,Niu, G.(2015).Moving toward sustainability with alternative containers for greenhouse and nursery crop production: a review and research update.HortTechnology,25(1),8-16.
  21. Nambuthiri, S.,Geneve, R. L.,Sun, Y.,Wang, X.,Feraandez, R. T.,Niu, G.,Bi, G.,Fulcher, A.(2015).Substrate temperature in plastic and alternative nursery containers.HortTechology,25(1),50-56.
  22. Onmura, S.,Matsumoto, M.,Hokoi, S.(2001).Study on the evaporative cooling effect of roof lawn gardens.Energy and buildings,33(7),635-666.
  23. Stovin, V.(2010).The potential of green roofs to manage urban stormwater.Water and environment journal,24(3),192-199.
  24. Takebayashi, H.,Moriyama, M.(2007).Surface heat budget on green roof and high reflection roof for mitigation of urban heat island.Building and Environment,42(8),2971-2979.
  25. VanWoert, N. D.,Rowe, D. B.,Andresen, J. A.,Rugh, C. L.,Xiao, L.(2005).Watering regime and green roof substrate design affect sedum plant growth.HortScience,40(3),659-664.
  26. Wong, N. H.,Chen, Y.,Ong, C. L.,Sia, A.(2003).Investigation of thermal benefits of rooftop garden in the tropical environment.Building and environment,38(2),261-270.