题名

以van Hiele理論探討圖形樣式思考層次之研究

并列篇名

A Study of the Thinking Levels of Pictorial Patterns from the Viewpoint of van Hiele's Theory

DOI

10.6910/BER.200803_(54-1).0003

作者

馬秀蘭(Hsiu-Lan Ma)

关键词

van Hiele ; 思考層次 ; 圖形樣式 ; van Hiele ; thinking levels ; pictorial patterns

期刊名称

教育研究集刊

卷期/出版年月

54:1期(2008 / 03 / 31)

页次

49 - 85

内容语文

繁體中文

中文摘要

本文旨在將van Hiele思考層次應用到數學的圓形樣式解題上。研究者修正了Fuys、Geddes與Tischler(1988)針對van Hiele幾何層次所提出的部分行為描述,建立國小高年級學童解決圓形樣式題之思考層次行為,並依21個有關學生實際解決圖形樣式題表現之原案,嘗試擴展van Hiele理論之應用範疇至van Hiele圖形樣式思考層次。研究發現,高年級生對圖形樣式規律的思考層次行為符合van Hiele之理論,學生圖形樣式之思考仍可分派至某一個層次;其中因思考深度不同,層次二及三再細分為二A、二B及三A、三B。學童之樣式思考層次亦具有次序性、內出性與外出性,以及語言性之特性。學生若能用幾何圖形結構之間的關係來辨認樣式,則有助於形樣式思考層次的提升及代數知識的建造。此探索性研究之結果將提供給未來有嚴謹設計之後續研究者進行大樣本之檢測。

英文摘要

The purpose of this paper is to discuss the application of van Hide's thinking levels to problem-solving of pictorial patterns. The researcher modified some of the van Hiele level descriptors described by Fuys, Geddes, & Tischler (1988) and established the van Hiele level descriptors regarding 21 upper graders solving pictorial-pattern problems. The conclusions drawn from this study are as follows. (1) The students' thinking on pictorial patterns fitted in with van Hiele's theorem and could be classified into certain levels. (2) According to the different thinking degrees of the students, level 2 and 3 were divided into 2A, 2B and 3A, 3B, respectively. (3) Four properties were shown in the thinking levels: sequential, intrinsic and/or extrinsic, and linguistic. (4) If students could use the relations between the structures of figures to identify patterns, they were able to advance their thinking levels of pictorial patterns and to construct algebraic knowledge. It is hoped that the results of this explorary research will contribute to a more rigid study design with a larger sample in the future.

主题分类 社會科學 > 教育學
参考文献
  1. 馬秀蘭(2004)。數學乘除問題情境嶺展之研究-以BBS為管道。科學教育學刊,12(1),53-81。
    連結:
  2. Assessment of Performance Unit (n.d.).Mathematical development: A review of monitoring mathematics 1978 to 1982.Slough:NFER.
  3. Biggs, E.,Shaw, K.(1985).Maths alive.London:Cassell.
  4. Clements, D. H.,Swaminthan, S.,Hannibal, M. A. Z.,Sarama, J.(1999).Young children`s concepts of shape.Journal for Research in Mathematics Education,20(2),192-212.
  5. Crowley, M. L.,M. Lindquist,A. P. Shulte (Eds.)(1987).Learning and teaching geometry, .K-12.Reston, VA:NCTM.
  6. Cuba, E. G.,Lincoln, Y. S.(1989).Fourth generation evaluation.Sage:Thousand Oaks, CA.
  7. De Block-Docq, C.(1994).Forms of mathematical thought of twelve-year-old students at tiling problems.Educational Studies in Mathematics,27(2),165-189.
  8. English, L. D.,Warren, B. A.,B. Moses (Ed.)(1999).Algebraic thinking, grades K-12.Reston, VA:NCTM.
  9. Fuys, D.,Geddes, D.,Tischler, R.(1988).The van Hiele model of thinking in geometry among adolescents.Reston, VA:The National Council of Teachers of Mathematics.
  10. Golinskaia, L.(1997).Columbia,Columbia University.
  11. Hargreaves, M.,Threlfall, J.,Frobisher, L.,Shorrocks-Taylor, D.,A. Orton (Ed.)(1999).Pattern in the teaching and learning of mathematics.Wellington House, London:Cassell.
  12. Herbert, K.,Brown, R. H.(1997).Patterns as tools for algebraic reasoning.Teaching Children Mathematics,3(6),340-344.
  13. Jamime, A.,Gutierrez, A.(1995).Connecting research to teaching: Guidelines for teaching plane isometrics in secondary school.Mathematics Teacher,88(7),591-597.
  14. Land, J. E.(1991).Appropriateness of the van Hide model for describing students` cognitive processes on algebra tasks as typified by college students` learning of functions (Doctoral dissertation, Boston University, 1990).Dissertation Abstracts International,51,3659.
  15. Lee, W. I.(1999).Colorado,University of Northern Colorado.
  16. Ma, H. L.,J. H. Woo,H. C. Lew,K. S. Park,D. Y. Aeo (Eds.)(2007).Proc. of 31th Conf. of the Iut Group for the Psychology of Mathematics Education.Seoul, Korea:PME.
  17. Ma. H. L.(2005).Paper presented at International Conference on Education, Redesigning Pedagogy.Singapore:Nanyang Technological University.
  18. Ma. H. L.,Wu, D. B.,G Dhompongsa, F. M. Bhatti,Q. Kristen (Eds.)(2006).Proc. of Thailand international conference on 21st century information technology in mathematics education.Thailand:Chiang Mai.
  19. Malloy, C. E.(1999).Perimeter and area through the van Hide Model.Mathematics Teaching in the Middle School,5(2),87-90.
  20. Mason, J.,Graham, A.,Pimm, D.,Gowar, N.(1985).Routes to/roots of algebra.Milton Keynes, UK:Open University Press.
  21. Mayberry, J. W.(1983).The van Hide levels of geometric thought in undergraduate preservice teachers.Journal for Research in Mathematics Education,14(1),58-69.
  22. Miles, M. B.,Huberman, A. M.(1994).Qualitative data analysts.London:Sage.
  23. Mistretta, R. M.(2000).Enhancing geometric reasoning.Adolescence,35(138),365-379.
  24. National Research Council(1989).Everybody counts: A report to the natron on the future of mathmatics education.Washington, DC:National Academy Press.
  25. Naylor, M.(2002).Who am I.Teaching PreK-8,32(4),40-41.
  26. Orten, A.,Orten, J.,A. Orten (Ed.)(1999).Pattern in the teaching and learning of mathematics.London:Cassell.
  27. Orten, J.,Orten, A.,Roper, T.,A. Orten (Ed.)(1999).Pattern in the leaching and learning of mathematics.London:Cassell.
  28. Penrose, K.(1991).The emperor`s new mind. Society,17(4),447-462.
  29. Usiskin, Z.(1982).van Hiele levels and achievement in secondary school geometry (Final .Report of the cognitive development and achievement in secondary school Igeometry project).Chicago, IL:University of Chicago, Department of Education.
  30. van Hide,P. M.(1986).Structure and insight: A theory of mathematics education.Orlando, Fla:Academic Press.
  31. Wu, D. B.,Ma, H. L.,Hsieh, K. J.,Li, Y. F.,J. H. Woo,H. C. Lew,K. S. Park,D. Y. Aeo (Eds.)(2007).Proc. Of 31th conf. of the int. group for the psychology of mathematics education.Seoul, Korea:PME.
  32. Wu, D. B.,Ma, H. L.,J. Novotná, H. Moraová, M. Krátká,N. Stehliková (Eds.)(2006).Proc. of 30th conf. of the int. group for the psychology of mathematics education.Prague, Czech Republic:PME.
  33. Zimmermann, W.,Cunningbam, S.,W. Zimmermann,S. Cunningham (Eds.)(1991).Visualization in teaching and learning mathematics.Washington. DC:The Mathematical Association of America.
  34. 王文科(2001)。教育研究法。臺北市:五南。
  35. 左臺益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研究。師大學報,46(1/2),1-20。
  36. 吳德邦(1999)。臺灣中部地啜國小學童van Hiele幾何思考層次之研究―筆試部分。「八十八學年度師範學院教育學術論文發表會」論文集,臺北市:
  37. 吳德邦(2004)。行政院國家科學委員會專題研究成果報告。臺中市:國立臺中師範學院。
  38. 吳德邦、李懿芳、馬秀蘭、吳德邦主編(2006)。立體幾何思考層次測驗編製歷程之研究。數學考卷編製暨評析研討會論文集暨會議實務彙編,臺中市:
  39. 吳德邦、馬秀蘭、藍同利(2006)。探究國小視覺型與觸覺型兒童在繪製三角形活動之概念分析。國立臺中教育大學學報,20(2),99-138。
  40. 林軍治(1992)。兒童幾何思考之VAN H1ELE水準分析研究―VHL、城鄉、年級、性別、認知型式與幾何概念理解及錯誤概念之關係。臺中市:書恒。
  41. 洪萬生(2003)。行政院國家科學委員會專題研究成果報告。臺北市:國立臺灣師範大學。
  42. 教育部(1993)。國民小學課程標準。臺北市:中正。
  43. 劉好、國立嘉義師範學院主辦(1993)。國小數學科新課程中幾何教材的設計。「八十二學年度數學教育研討會論文暨會議實錄彙編」,嘉義市:
  44. 盧銘法(1999)。國小學童四邊形幾何概念之分析。中師數理學報,3(1),5-33。
  45. 謝貞秀、張英傑(2003)。國小三四年級平面圖形概念之探究。國立臺北師範學院學報,16(2),97-134。
被引用次数
  1. 陳佩秀(2018)。資訊科技與提問教學策略對數學學習困難學童在數量關係單元解題表現之成效。臺北市立大學學報:教育類,49(2),53-78。