题名

不同等號概念之基模導向解題教學實驗研究

并列篇名

A Schema-based Problem-solving Instruction Experiment of Different Concepts of the Equal Sign on First Graders

DOI

10.3966/102887082011095703002

作者

陳嘉皇(Chia-Huang Chen)

关键词

等號 ; 分解 ; 合成 ; 基模 ; equal sign ; decompose ; regroup ; schema

期刊名称

教育研究集刊

卷期/出版年月

57:3期(2011 / 09 / 30)

页次

37 - 73

内容语文

繁體中文

中文摘要

本研究旨在針對不同等號概念之教材,進行基模導向解題教學實驗,以探索學生等號概念的表現,並歸納合宜之學習路徑,以做為日後改善代數推理教學與課程設計的依據。研究樣本為公立小學12名一年級學生,2人一組,參與研究者設計之不同順序等號概念的教學實驗與測驗,資料分析與說明則採取質、量併陳方式來呈現。綜合研究發現,獲得以下結果:經不同等號概念之教學情境實驗後,學生能獲得等號反身性、單邊運算與雙邊運算相等關係的觀念;學生等號概念的學習以路徑「單邊運算→反身性→雙邊運算」之教學效果最佳,其次為「反身性→單(雙)邊運算→雙(單)邊運算」之教學順序;等號概念之間的轉化與連結,依學生認知能力不同而有不同表現。研究者根據發現結果提出建議,提供未來等號概念之教學與研究參考。

英文摘要

The goal of this study was to reevaluate the concept of the equal sign and implement schema-based problem-solving instruction experiment to understand the process of solving equation problems and the means of learing it. When taking a test, twelve first graders completed three sequential tasks specifying a concept related to the equal sign. The collected data were analyzed according to descriptive statistics with a qualitative approach. The results showed that most of the students were capable of acquiring the three concepts represented by the equal sign after such an experiment,. The best method of learning the concepts of the equal sign involved the following sequences: 1) one-side operation → reflection → two-side operation; 2) reflection → one-side operation → reflection → two-side operation; or 3) reflection → two-side operation → one-side operation. Students of different cognitive abilities showed different degrees of performance in the transformation and connection of their concepts of the equal sign. These findings could support teachers engaging students in opportunities to learn the concepts of the equal sign, by demonstrating how instruction can be used to improve and guide the design of curricula.

主题分类 社會科學 > 教育學
参考文献
  1. Säljö, R. (2005). Cultural tools and human knowing: A sociocultural perspective on learning and the study of learning. Unpublished manuscript, Nordic Graduate School in Mathematics Education Summer School, Jyväskylä, Finland..
  2. Carpenter, T. P.,Franke, M. L.,Levi, L.(2003).Thinking mathematically: Integrating arithmetic and algebra in elementary school.Portsmouth, NH:Heinernann.
  3. Denmark, T.,Baxco, E.,Voran, J.(1976).,Tallahassee, FL:Florida State University.
  4. Gelman, R.,Gallistel, C. R.(1978).The child's understanding of number.Cambridge, CA:Harvard University Press.
  5. Greeno, J.(1991).Number sense as situated knowing in a conceptual domain.Journal for Research in Mathematics Education,22,170-218.
  6. Kant, I.,Smith, N. K.(Trans.)(1968).Critique of pure reason.New York:St. Martin's Press.
  7. Kieran, C.(1981).Concepts associated with the equality symbol.Educational Studies in Mathematics,12,317-326.
  8. Marshall, S. P.(1995).Schemas in problem solving.New York:Cambridge University Press.
  9. McNeil, N. M.,Alibali, M. W.(2005).Knowledge change as a function of mathematics experience: All contexts are not created equal.Journal of Cognition and Development,6,285-306.
  10. McNeil, N. M.,Grandau, L.,Knuth, E. J.,Alibali, M. W.,Stephens, A. C.,Hattikudur, S.(2006).Middle-school students' understanding of the equal sign: The books they read can't help.Cognition and Instruction,24(3),367-385.
  11. Piaget, L.,Margaret, C.(Trans.)(1952).The origins of intelligence in children.New York:International University Press.
  12. Schank, R. C.(1975).The structure of episodes in memory.Representation and understanding,New York:
  13. Winston, P.(Ed.)(1975).The psychology of computer vision.New York:McGraw-Hill.
  14. 林清山(1992)。心理與教育統計學。臺北市=Taipei, Taiwan:東華=Dong Haw。
  15. 國立教育研究院籌備處(2002)。國小數學教材分析─整數的數量關係。臺北市=Taipei, Taiwan:國立教育研究院籌備處=National Education Research Preparatory Office。
  16. 教育部(2003)。國民中小學九年一貫課程綱要:數學領域。臺北市=Taipei, Taiwan:教育部=Ministry of Education。
  17. 陳嘉皇(2008)。國小學童等號概念解釋與解題策略初探。臺灣數學教師電子期刊,13,34-46。
  18. 陳嘉皇(2009)。提升學童等號關係概念理解教學設計與實施成效研究。國立高雄師範大學學報,26,21-41。
  19. 陳慧姿(2009)。從基模理論談數學文字題閱讀理解及其對數學教學的啟示。教育研究,17,219-230。
  20. 陳麗華(1988)。基模理論與教科書內容的設計。現代教育,4,128-139。
  21. 謝闓如(2010)。行政院國家科學委員會專題研究計畫成果報告行政院國家科學委員會專題研究計畫成果報告,臺中市:國立臺中教育大學數學教育系。
被引用次数
  1. 陳嘉皇(2013)。國小六年級學生運用一般化基模進行圖形規律問題解題之研究。教育科學研究期刊,58(1),59-90。