题名

表徵與國小學生代數思考之初探性研究

并列篇名

An Exploratory Study of Mathematical Representation and Algebraic Thinking of Elementary School Students

DOI

10.3966/102887082014066002001

作者

陳嘉皇(Chia-Huang Chen);梁淑坤(Shuk-Kwan Leung)

关键词

一般化 ; 代數思考 ; 表徵 ; generalization ; algebraic thinking ; representations

期刊名称

教育研究集刊

卷期/出版年月

60:2期(2014 / 06 / 30)

页次

1 - 40

内容语文

繁體中文

中文摘要

本研究旨在透過不同表徵問題,檢驗理解學生一般化表現情形,依據表現顯示之難易度,解析學生一般化適用之表徵類型,並探索表徵可提供何種相關啟示來協助學生一般化。研究樣本為國小五、六年級學生,共423人,利用測驗調查及訪談方式蒐集資料,資料分析採量化與質性併陳方式進行。研究發現包括:一、六年級學生一般化的表現較五年級學生佳,且有顯著差異存在;二、學生在各問題的反應呈現以表格表徵的問題表現最佳,其次是文字與圖形表徵,再者為圖像表徵問題的表現,而數字表徵則最感困難;三、表格、圖形與文字表徵的問題可適用於學生一般化歷程發想、問題的理解、變數的辨識、結構關係的連結和發展;四、圖像與數字表徵問題可激發學生對變數關係的發展加以推理與臆測,形成規則進行解題。

英文摘要

This study provided various representation problems with which to evaluate students’ performance in generalization. The types of representation appropriate for generalization were determined according to the difficulty and characteristics of the representation problems. A total of 423 fifth and sixth grade students underwent generalization tests and interviews, the results of which were subjected to both quantitative and qualitative analysis. The results showed that sixth grade students significantly outperformed fifth grade students in generalization problems. In addition, students performed most favorably in table representation problems, followed by text, graphs, and pictorial representations. The students felt that numeric representation was the most difficult. We found that representation problems adopting tables, graphs, and text are suitable for thinking in the process of generalization problems, variable recognition, and the connection and development of structural relationships. Pictorial and numeric representations were shown to stimulate students to speculate about variable relationships and form rules with which to solve problems. We believe that the results of this study provide a valuable reference for researchers in terms of algebraic thinking and instructional development.

主题分类 社會科學 > 教育學
参考文献
  1. 陳嘉皇(2013)。國小六年級學生運用一般化基模進行圖形規律問題解題之研究。教育科學研究期刊,58(1),59-90。
    連結:
  2. Blanton, M.,Kaput, J.(2002).Developing elementary teachers' algebra "eyes and ears": Understanding characteristics of professional development that promote generative and self-sustaining change in teacher practice.Annual Meeting of the American Educational Research Association,New Orleans, LA:
  3. Earnest, D.,Balti, A. A.(2008).Instructional strategies for teaching algebra in elementary school.Teaching Children Mathematics,14(9),518-522.
  4. Friel, S. N.,Curcio, F. R.,Bright, G. W.(2001).Making sense of graphs: Critical factors influencing comprehension and instructional implications.Journal for Research in Mathematics Education,32(2),124-158.
  5. Goldin, G. A.(1998).Representational systems, learning, and problem solving in mathematics.Journal of Mathematical Behavior,17(2),137-165.
  6. Goldin, G. A.,Kaput, J. J.(1996).A joint perspective on the idea of representation in learning and doing mathematics.Theories of mathematical learning,Mahwah, NJ:
  7. Kaput, J.(1998).Transforming algebra from an engine of inequity to an engine of mathematical power by "algebrafying" the k-12 curriculum.The nature and role of algebra in the k-14 curriculum,Washington, DC:
  8. Kieran, C.(1996).The changing face of school algebra.Eighth international conference on mathematical education: Selected lectures,Seville, Spain:
  9. Kilpatrick, J.(Ed.),Martin, W. G.(Ed.),Schifter, D.(Ed.)(2003).A research companion to principle and standards for school mathematics.Reston, VA:The National Council of Teachers of Mathematics.
  10. Kilpatrick, J.,Swafford, J.,Findell, B.(2001).Adding it up: Helping children learn mathematics.Washington, DC:National Academy Press.
  11. Koedinger, K. R.,Nathan, M. J.(2004).The real story behind story problems: Effects of representations on quantitative reasoning.Journal of the Learning Science,13(2),129-164.
  12. Nathan, M. J.,Kim, S.(2007).Pattern generalization with graphs and words: A cross-sectional and longitudinal analysis of middle school students' representational fluency.Mathematical Thinking and Learning,9(3),193-219.
  13. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:Author.
  14. Rivera, F. D.(2010).Visual templates in pattern generalization activity.Educational Studies in Mathematics,73(3),297-328.
  15. Steffe, L. P.(1992).Schemes of action and operation involving composite units.Learning and Individual Differences,4(3),259-309.
  16. Tall, D.(Ed.)(1991).Advanced mathematical thinking processes.Dordrecht, Netherlands:Kluwer.
  17. 教育部(2003)。國民中小學九年一貫課程綱要:數學學習領域。臺北市=Taipei, Taiwan:作者=Author。
  18. 陳嘉皇(2006)。國小五年級學童代數推理策略應用之研究:以「圖卡覆蓋」解題情境歸納算式關係為例。屏東教育大學學報,25,381-412。
  19. 陳嘉皇(2007)。學童「圖卡覆蓋」代數推理歷程之研究:以三個個案為例。國民教育研究學報,19,79-107。
被引用次数
  1. 蘇承芳、張正杰(2015)。數位筆記本融入高級中學數學補救課程之研究。數位學習科技期刊,7(4),47-71。
  2. (2019)。由認知負荷觀點探討國中代數試題難度。教育研究學報,53(1),45-70。