题名

接觸偏差同儕對偏差行為影響的決策-動機內在歷程分析

并列篇名

An Analysis of Inner Decision Making-Motivational Process Underlying the Effects of Attachment to Deviant Peers on Individual Deviance

DOI

10.53106/102887082023036901003

作者

吳中勤(Chung-Chin Wu)

关键词

中介分析 ; 決策 ; 偏差行為 ; 動機 ; 接觸偏差同儕 ; mediation analysis ; decision making ; deviance ; motivation ; attachment to deviant peers

期刊名称

教育研究集刊

卷期/出版年月

69:1期(2023 / 03 / 31)

页次

83 - 125

内容语文

繁體中文;英文

中文摘要

青少年偏差行為可能受到偏差同儕、認知—情緒歷程失衡與行為動機的影響。本研究主要目的有二:一、編製信、效度良好的偏差行為趨避動機測量工具。二、整合社會心理學理論與認知神經科學觀點,提出偏差行為的決策-動機歷程模式,釐清該模式是否適合用來解釋青少年從事偏差行為背後的內在歷程。本研究以八年級學生為對象,進行多層次結構方程中介分析發現:一、偏差行為趨避動機測量具有良好的信、效度。二、接觸偏差同儕對偏差行為的效果,除了社會情境具有最大的直接影響外,青少年對接觸偏差同儕或從事偏差行為可能帶來的獲益評估,其影響居次,正、負向情緒也解釋了背後部分的內在歷程,且情緒的影響與獲益評估相當。三、損失評估與趨避動機未能解釋接觸偏差同儕對偏差行為影響的內在歷程。

英文摘要

Juvenile deviance is influenced by the attachment to deviant peers, the unbalanced interplay between cognition and emotion, and behavioral motivation. The purposes of this study are as follows: (1) to develop a reliable and valid measurement for the approach and avoidance motivation of deviance; (2) to propose a decision making-motivational process model which incorporates sociopsychological and cognitive neuroscience theories to clarify its appropriateness to account for the inner process of juvenile deviance. Eighth-grade students consented to participate in this study, and multilevel mediation SEM analysis was used to analyze the data. The results showed: (1) the measurement of approach and avoidance motivation of deviance demonstrated good reliability and validity; (2) the attachment to deviant peers is the most influential social factor of juvenile deviance, followed by evaluations of potential benefits, as well as positive and negative emotions, with benefits and emotions showing equivalent effects; and (3) the evaluation of losses, approach and avoidance motivation failed to account for the inner process of the effect of attachment to deviant peers on juvenile deviance.

主题分类 社會科學 > 教育學
参考文献
  1. 吳中勤(2017)。接觸偏差同儕對偏差行為影響之理論模式的衡鑑。中華輔導與諮商學報,50,63-87。https://doi.org/10.3966/172851862017120050003[Wu, C.-C. (2017). Evaluating the theoretical model for effects of associated with deviant peer on individual deviance. Chinese Journal of Guidance and Counseling, 50, 63-87. https://doi.org/10.3966/172851862017120050003]
    連結:
  2. 吳中勤(2019)。偏差行為的社會益損評估量表之發展與衡鑑。中華輔導與諮商學報,55,97-121。https://doi.org/10.3966/172851862019050055004[Wu, C.-C. (2019). Evaluating the theoretical model for effects of associated with deviant peer on individual deviance. Chinese Journal of Guidance and Counseling, 55, 97-121. https://doi.org/10.3966/172851862019050055004]
    連結:
  3. Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2011). Alternative methods for assessing mediation in multilevel data: The advantages of multilevel SEM. Structural Equation Modeling, 18(2), 161-182. https://doi.org/10.1080/10705511.2011.557329
  4. Rebellon, C. J. (2012). Differential association and substance use: Assessing the roles of discriminant validity, socialization, and selection in traditional empirical tests. European Journal of Criminology, 9(1), 73-96. https://doi.org/10.1177/1477370811421647
  5. Sigfusdottir, I. D., Kristjansson, A. L., & Agnew, R. (2012). A comparative analysis of general strain theory. Journal of Criminal Justice, 40(2), 117-127. https://doi.org/10.1016/j.jcrmjus.2012.01.001
  6. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78-106. https://doi.org/10.1016/j.dr.2007.08.002
  7. Sun, I. Y., & Longazel, J. G. (2008). College students’ alcohol-related problems: A test of competing theories. Journal of Criminal Justice, 36(6), 554-562. https://doi.org/10.1016/j.jcrimjus.2008.09.007
  8. Telzer, E. H., van Hoorn, J., Rogers, C. R., & Do, K. T. (2018). Social influence on positive youth development: A developmental neuroscience perspective. Advances in Child Development and Behavior, 54, 215-258. https://doi.org/10.1016/bs.acdb.2017.10.003
  9. van Hoorn, J., McCormick, E. M., Rogers, C. R., Ivory, S. L., & Telzer, E. H. (2018). Differential effects of parent and peer presence on neural correlates of risk taking in adolescence. Social Cognitive and Affective Neuroscience, 13(9), 945-955. https://doi.org/10.1093/scan/nsy071
  10. van Hoorn, J., Shablack, H., Lindquist, K. A., & Telzer, E. H. (2019). Incorporating the social context into neurocognitive models of adolescent decision-making: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 101, 129-142. https://doi.org/10.1016/j.neubiorev.2018.12.024
  11. Wang, J., & Wang, X. (2012). Structural equation modeling: Application using Mplus. Wiley.
  12. Ward, B. W., & Gryczynski, J. (2009). Social learning theory and the effects of living arrangement on heavy alcohol use: Results from a national study of college students. Journal of Studies on Alcohol and Drugs, 70(3), 364-372. https://doi.org/10.15288/jsad.2009.70.364
  13. Yang, F., Nelson-Gardell, D., & Guo, Y. (2018). The role of strains in negative emotions and bullying behaviors of school-aged children. Children and Youth Services Review, 94, 290-297. https://doi.org/10.1016/j.childyouth.2018.10.016
  14. Zimmerman, G. M. (2010). Impulsivity, offending, and the neighborhood: Investigating the person-context nexus. Journal of Quantitative Criminology, 26(3), 301-332. https://doi.org/10.1007/s10940-010-9096-4
  15. 王麗斐、李旻陽、羅明華(2013)。WISER生態系統合作觀的雙師合作策略。輔導季刊,49(3),2-12。[Wang, L.-F., Li, M.-Y., & Lo, M.-H. (2013). WISER teacher-paired cooperation strategy of ecosystem cooperation viewpoint. Guidance Quarterly, 49(3), 2-12.]
  16. 吳中勤(2021)。探究認知與情緒歷程對青少年偏差行為的影響:雙重系統理論觀點的檢驗與修正。教育學報,49(1),187-209。[Wu, C.-C. (2021). Investigating the effects of cognitive and emotional process on juvenile deviant behaviors: Examination and revision of dual system theory. Education Journal, 49(1), 187-209.]
  17. 董旭英(2009)。生活壓迫事件、社會支持、社會心理特質與台灣都會區國中生偏差行為之關係。青少年犯罪防治研究期刊,1(1),129-164。[Tung, Y.-Y. (2009). Relationships among coercion, social support, social-psychologicalcharacteristics and delinquency of junior high school students in Taiwan metropolitan areas. Journal of Research in Delinquency and Prevention, 1(1), 129-164.]
  18. 謝曜任(2013)。從WISER模式談專任輔教師的角色與功能。輔導季刊,49(3),13-18。[Hsieh, Y.-J. (2013). Talking about role and function of counselling teachers through WISER model. Guidance Quarterly, 49(3), 13-18.]
  19. Agnew, R. (1991). A longitudinal test of social control theory and delinquency. Journal of Research in Crime and Delinquency, 28(2), 126-156. https://doi.org/10.1177/0022427891028002002
  20. Agnew, R. (1992). Foundation for a general strain theory of crime and delinquency. Criminology, 30(1), 47-88. https://doi.org/10.1111/j.1745-9125.1992.tb01093.x
  21. Agnew, R. (1993). Why do they do it? An examination of the intervening mechanisms between “social-control” variables and delinquency. Journal of Research in Crime and Delinquency, 30(3), 245-266. https://doi.org/10.1177/0022427893030003001
  22. Agnew, R. (2001). Building on the foundation of general strain theory: Specifying the types of strain most likely to lead to crime and delinquency. Journal of Research in Crime and Delinquency, 38(4), 319-361. https://doi.org/10.1177/0022427801038004001
  23. Agnew, R., & Brezina, T. (2019). General strain theory. In M. D. Krohn, N. Hendrix, G. P. Hall, & A. J. Lizotte (Eds.), Handbook on crime and deviance (pp. 145-160). Springer.
  24. Akers, R. L., & Jennings, W. G. (2019). The social learning theory of crime and deviance. In M. D. Krohn, N. Hendrix, G. P. Hall, & A. J. Lizotte (Eds.), Handbook on crime and deviance (pp. 113-129). Springer
  25. Akers, R. L., & Sellers, C. S. (2009). Criminological theories: Introduction, evaluation, and application. Oxford.
  26. Andrews, J. L., Ahmed, S. P., & Blakemore, S. J. (2021). Navigating the social environment in adolescence: The role of social brain development. Biological Psychiatry, 89(2), 109-118. https://doi.org/10.1016/j.biopsych.2020.09.012
  27. Arnett, P. A., Smith, S. S., & Newman, J. P. (1997). Approach and avoidance motivation in psychopathic criminal offenders during passive avoidance. Journal of Personality and Social Psychology, 72(6), 1413-1428. https://doi.org/10.1037/0022-3514.72.6.1413
  28. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  29. Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52(2), 336-372. https://doi.org/10.1016/j.geb.2004.06.010
  30. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 7-15. https://doi.org/10.1016/0010-0277(94)90018-3
  31. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473-5481. https://doi.org/10.1523/JNEUROSCI.19-13-0547.1999
  32. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-malting deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39(4), 376-389. https://doi.org/10.1016/s0028-3932(00)00136-6
  33. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 215-225. https://doi.org/10.1093/cercor/6.2.215
  34. Burdick, J. D., Roy, A. L., & Raver, C. C. (2013). Evaluating the Iowa Gambling Task as a direct assessment of impulsivity with low-income children. Personality and Individual Differences, 55(7), 771-776. https://doi.org/10.1016/j.paid.2013.06.009
  35. Burnett, S., Bault, N., Coricelli, G., & Blakemore, S. J. (2010). Adolescents’ heightened risk-seeking in a probabilistic gambling task. Cognitive Development, 25(2), 183-196. https://doi.org/10.1016/j.cogdev.2009.11.003
  36. Burt, C. H., Simons, R. L., & Simons, L. G. (2006). A longitudinal test of the effects of parenting and the stability of self-control: Negative evidence for the general theory of crime. Criminology, 44(2), 353-396. https://doi.org/10.1111/j.1745-9125.2006.00052.x
  37. Carver, C. S., Sutton, S. K., & Scheier, M. F. (2000). Action, emotion, and personality: Emerging conceptual integration. Personality and Social Psychology Bulletin, 26(6), 741-751. https://doi.org/10.1177/0146167200268008
  38. Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 62-77. https://doi.org/10.1016/j.dr.2007.08.003
  39. Cauffman, E., Shulman, E. P., Steinberg, L., Claus, E., Banich, M. T., Graham, S., & Woolard, J. (2010). Age differences in affective decision making as indexed by performance on the Iowa Gambling Task. Developmental Psychology, 46(1), 193-207. https://doi.org/10.1037/a0016128
  40. Church, W. T., Wharton, T., & Taylor, J. K. (2008). Examination of differential association and social control theory: Family systems and delinquency. Youth Violence and Juvenile Justice, 7(1), 3-15.
  41. Ciranka, S., & van den Bos, W. (2019). Social influence in adolescent decision-making: A formal framework. Frontiers in Psychology, 10, 1915. https://doi.org/10.3389/fpsyg.2019.01915
  42. Coyle, S., Cipra, A., & Rueger, S. Y. (2021). Bullying types and roles in early adolescence: Latent classes of perpetrators and victims. Journal of School Psychology, 89(2), 51-71. https://doi.org/10.1016/j.jsp.2021.09.003
  43. Corr, P. J., & McNaughton, N. (2012). Neuroscience and approach/avoidance personality traits: A two stage (valuation-motivation) approach. Neuroscience and Biobehavioral Reviews, 36(10), 2339-2354. https://doi.org/10.1016/j.neubiorev.2012.09.013
  44. De Pascalis, V., Cozzuto, G., Caprara, G. V., & Alessandri, G. (2013). Relations among EEG-alpha asymmetry, BIS/BAS, and dispositional optimism. Biological Psychology, 94(1), 198-209. https://doi.org/10.1016/j.biopsycho.2013.05.016
  45. Defoe, I. N., Dubas, J. S., Figner, B., & van Aken, M. A. G. (2015). A meta-analysis on age differences in risky decision making: Adolescents versus children and adults. Psychological Bulletin, 141(1), 48-84. https://doi.org/10.1037/a0038088
  46. Durkin, K. F., Wolfe, T. W., & Clark, G. A. (2005). College students and binge drinking: An evaluation of social learning theory. Sociological Spectrum, 25(3), 255-272. https://doi.org/10.1080/027321790518681
  47. Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership Quarterly, 16(1), 149-167. https://doi.org/10.1016/j.leaqua.2004.09.009
  48. Elliot, A. J., & Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72(1), 218-232. https://doi.org/10.1037//0022-3514.72.1.218
  49. Eitle, T. M., Eitle, D., & Johnson-Jennings, M. (2013). General strain theory and substance use among American indian adolescents. Race Justice, 3(1), 3-30. https://doi.org/10.1177/2153368712460553
  50. Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: Approach and avoidance temperaments and goals. Journal of Personality and Social Psychology, 82(5), 804-818. https://doi.org/10.1037/0022-3514.82.5.804
  51. Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task.Journal of Experimental Psychology: Learning Memory and Cognition, 35(3), 709-730. https://doi.org/10.1037/a0014983
  52. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
  53. Froggio, G. (2007). Strain and juvenile delinquency: A critical review of Agnew’s general strain theory. Journal of Loss & Trauma, 12(4), 383-418. https://doi.org/10.1080/15325020701249363
  54. Gao, Y., Wong, D. S. W., & Yu, Y. (2016). Maltreatment and delinquency in China: Examining and extending the intervening process of general strain theory. International Journal of Offender Therapy and Comparative Criminology, 60(1), 38-61. https://doi.org/10.1177/0306624X14547495
  55. Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Deviant Psychology, 41(4), 625-635. https://doi.org/10.1037/0012-1649.41.4.625
  56. Gupta, R., Koscik, T. R., Bechara, A., & Tranel, D. (2011). The amygdala and decision-making. Neuropsychologia, 49(4), 760-766. https://doi.org/10.1016/j.neuropsychologia.2010.09.029
  57. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38(8), 1180-1187. https://doi.org/10.1016/s0028-3932(99)00158-x
  58. Hair, J. F., William, C. B., Babin, B. J., & Rolph, E. A. (2009). Multivariate data analysis (7th ed.). Prentice Hall.
  59. Heck, R. H., & Thomas, S. L. (2009). An introduction to multilevel modeling techniques (2nd ed.). Routledge.
  60. Higgins, G. E., & Tewksbury, R. (2007). Sports fan binge drinking: An examination using low self-control and peer association. Sociological Spectrum, 27(4), 389-404. https://doi.org/10.1080/02732170701313472
  61. Hirschi, T. (1969). Causes of delinquency. University of California Press.
  62. Hirschi, T. (2002). Causes of delinquency. Transaction.
  63. Hollist, D. R., Hughes, L. A., & Schaible, L. M. (2009). Adolescent maltreatment, negative emotion, and delinquency: An assessment of general strain theory and family-based strain. Journal of Criminal Justice, 37(4), 379-387. https://doi.org/10.1016/j.jcrimjus.2009.06.005
  64. Hox, J. J. (2010). Multilevel analysis: Techniques and applications. Routledge.
  65. Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  66. Intravia, J., Jones, S., & Piquero, A. R. (2012). The roles of social bonds, personality, and perceived costs: An empirical investigation into Hirschi’s “new” control theory. International Journal of Offender Therapy and Comparative Criminology, 56(8), 1182-1200. https://doi.org/10.1177/0306624X11422998
  67. Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International.
  68. Kim, Y. S. (2016). Examination of the relative effects of neighborhoods and schools on juvenile delinquency: A multilevel cross-classified model approach. Deviant Behavior, 37(10), 1196-1214. https://doi.org/10.1080/01639625.2016.1170537
  69. Lilly, J. R., Cullen, F. T., & Ball, R. A. (2007). Crime in American society: Anomie and strain theories. Sage.
  70. Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. O. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229. https://doi.org/10.1037/a0012869
  71. Marsh, H. W., Muthen, B., Asparouhov, T., Ludtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching. Structural Equation Modeling, 16(3), 439-476. https://doi.org/10.1080/10705510903008220
  72. Matsueda, R. L., & Heimer, K. (1987). Race, family structure, and delinquency: A test of differential association and social control theories. American Sociological Review, 52(6), 826-840. https://doi.org/10.2307/2095837
  73. Matsueda, R. L., Kreager, D. A., & Huizinga, D. (2006). Deterring delinquents: A rational choice model of theft and violence. American Sociological Review, 71(1), 95-122. https://doi.org/10.1177/000312240607100105
  74. Mazas, C. A., Finn, P. R., & Steinmetz, J. E. (2000). Decision-making biases, antisocial personality, and early-onset alcoholism. Alcoholism-Clinical and Experimental Research, 24(7), 1036-1040. https://doi.org/10.1097/00000374-200007000-00014
  75. Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259-284. https://doi.org/10.1037/1082-989x.10.3.259
  76. Muthén, B., & Asparouhov, T. (2015). Causal effects in mediation modeling: An introduction with applications to latent variables. Structural Equation Modeling, 22(1), 12-23. https://doi.org/10.1080/10705511.2014.935843
  77. Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. Sociological Methodology, 25, 267-316.
  78. O’Brien, L., Albert, D., Chein, J., & Steinberg, L. (2011). Adolescents prefer more immediate rewards when in the presence of their peers. Journal of Research on Adolescence, 21(4), 747-753. https://doi.org/10.1111/j.1532-7795.2011.00738.x
  79. Petry, N. M., Bickel, W. K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93(5), 729-738. https://doi.org/10.1046/j.1360-0443.1998.9357298.x
  80. Pratt, T. C., & Cullen, F. T. (2000). The empirical status of Gottfredson and Hirschi’s general theory of crime: A meta-analysis. Criminology, 38(3), 931-964. https://doi.org/10.1111/j.1745-9125.2000.tb00911.x
  81. Pratt, T. C., Cullen, F. T., Sellers, C. S., Winfree, L. T., Madensen, T. D., Daigle, L. E., Fearn, N. E., & Gau, J. M. (2010). The empirical status of social learning theory: A meta-analysis. Justice Quarterly, 27(6), 765-802. https://doi.org/10.1080/07418820903379610
  82. Preacher, K. J. (2011). Multilevel SEM strategies for evaluating mediation in three-level data. Multivariate Behavioral Research, 46(4), 691-731. https://doi.org/10.1080/00273171.2011.589280