题名

基於物聯網之環境聲音辨識偵測平臺

DOI

10.29428/9789860544169.201801.0001

作者

黃俊卿;羅壽之

关键词

物聯網 ; 聲音辨識 ; 梅爾倒譜係數 ; 高斯混合模型 ; IoT ; Sound Recognition ; MFCC ; GMM

期刊名称

NCS 2017 全國計算機會議

卷期/出版年月

2017(2018 / 01 / 01)

页次

1 - 6

内容语文

繁體中文

中文摘要

近年來物聯網應用蓬勃發展。本研究開發即時辨識系統來監控敲門聲、鬧鐘聲與監控噪音,以預防災害的發生。設計方式是透過Android 手機麥克風收集音訊,利用MQTT輕量級的傳輸協定傳給網頁伺服器做即時性的聲音辨識。辨識技術採用梅爾倒譜係數(MFCC)選取特徵值與高斯混合模型(GMM)資料訓練,以辨識出聲音結果。實驗結果顯示,此環境聲音辨識偵測系統,能夠有效的辨識敲門聲與鬧鐘聲,然而使用者可以經由Restful API來啟動環境聲音辨識功能,以達到聲音事件的監控效果並提升軟體服務的價值。

英文摘要

In recent years, applications of Internet of Things become more popular. This study aims to prevent from danger by detecting the sound of door knocking and alarm clocks. This study utilizes the microphone of an Android smartphone to collect the sound, and uses the MQTT (Message Queuing Telemetry Transport) protocol to transfer the data to a Web server for immediate sound recognition. The detection technique is based on MFCC (Mel Frequency Cepstral Coefficients) to extract feature data and GMM (Gaussian mixture model) to train the data. As a result, the real-time surrounding sound detection system can effectively recognize the knock on the door and the alarm going off. Most importantly, the user can use Restful APIs to start the detection function and monitor sound events.

主题分类 基礎與應用科學 > 資訊科學