题名

機器學習於供水管網感測元件部署決策與漏水估測研究

DOI

10.29428/9789860544169.201801.0148

作者

劉一鳴;李韋承;曾煥然

关键词

EPANET ; 供水管網 ; 漏水偵測 ; 機器學習 ; 類神經網路 ; EPANET ; WDN ; Leak Detection ; Machine Learning ; Neural Network

期刊名称

NCS 2017 全國計算機會議

卷期/出版年月

2017(2018 / 01 / 01)

页次

788 - 792

内容语文

繁體中文

中文摘要

本文提出一類神經網路漏水估測方法,此方法是將漏水模型置於EPANET供水管網以模擬估測水壓及流量;並藉由變換不同的漏水位置與洩漏孔徑以取得類神經網路學習所需的漏水數據,且以個別管段分別進行漏水訓練。而在學習訓練的過程中,可以依據各管段的訓練收斂狀態得知是否需要新增水壓計或流量計等感測元件,以作為部署建置的決策依據。利用此分段類神經網路漏水估測,不僅可快速偵測出可能的漏水管段,且能找到漏水位置及漏損孔徑。本研究之方法較傳統擴散器漏水模型更易實現,也較過去以校正摩阻係數或用水需量等管網參數差異來定位可能漏損的方法更為直覺和易於理解;且非只找到可能的漏水區域,而是更快速地估測出確切的漏水管段、漏水位置及漏損大小;不僅可有效降低查漏設備的建置成本及可縮短查測時間,也將達成節水之實值效益。

英文摘要

A neural network algorithm is provided for water leakage estimation. In this algorithm, a leakage model is adopted to simulate the EPANET water distribution network for acquiring the measured water pressure and flow rate. By adjusting the leakage location and the leakage aperture of each fictitious pipe, we can obtain the training data for the neural network. In the training process, the decision of whether a new water sensor deployment is needed will be found according to the difficulty of training convergence. Then the neural network will be used to estimate the leak pipe, leakage position and leakage volume quickly. Our method is easier to implement than the traditional emitter-type leakage model, and is more intuitive and simpler to understand than the means of calibration parameters, such as friction coefficient or water demands. It can not only reduce the cost of leak testing equipment implementation, but also can shorten the detection and checking period effectively. The benefits of water-saving will be practically acquired.

主题分类 基礎與應用科學 > 資訊科學