题名

基於深度學習方法之佛教引用句推薦系統

并列篇名

A Buddhist Quote Recommendation System Based on Deep Learning Approaches

DOI

10.6853/DADH.202304_(11).0004

作者

釋廣慧(Guanghui Shi);王昱鈞(Yu-Chun Wang);洪振洲(Jen-Jou Hung)

关键词

佛教引用句 ; 推薦系統 ; 深度學習 ; 長短期記憶 ; BERT ; Buddhist quotes ; recommendation system ; deep learning ; LSTM ; BERT

期刊名称

數位典藏與數位人文

卷期/出版年月

11期(2023 / 04 / 01)

页次

105 - 133

内容语文

繁體中文;英文

中文摘要

在寫作之中,適度引用名言佳句是常用之撰寫技巧,能增進文章說服力,讓文章更加優美令人信服。而佛教典籍之中有非常多深具哲理與啟發之名句,許多創作之中亦時常引用佛教經典之語句以闡述其文之要旨,然對於現代人來說,要在寫作時引用佛教相關之引用句實非易事。因此能於文章寫作時依據當前內容自動推薦合適的佛教引用句即為一重要的需求與研究課題,本論文即針對佛教引用句推薦問題,提出基於長短期記憶(Long Short-Term Memory, LSTM)與基於轉換器的雙向編碼器表徵技術(Bidirectional Encoder Representations from Transformers, BERT)兩種深度學習方法之佛教引用句推薦系統,可自動從文章內容進行分析推薦合適的佛教引用句。我們建置佛教引用句資料集,藉以訓練深度學習模型,實驗結果顯示系統之推薦準確率可高達0.9148,其能有效進行寫作時之佛教引用句推薦。

英文摘要

In writing, citing famous sayings is a common writing technique, which can enhance the persuasiveness of the article and make the article more convincing. Buddhist quotes are one the vital sources of maxims. These Buddhist quotes are full of wisdom and often enlighten people. However, for modern people, knowing how to cite a suitable inspiring Buddhist quote are not an easy job. Therefore, a recommendation system which is able to automatically recommend suitable Buddhist quotes according to the content while writing becomes an urgent demand. This paper proposes a Buddhist quote recommendation system based on two deep learning approaches, such as LSTM and BERT. We compile a data set for Buddhist quote recommendations and then train a deep learning model. The experimental results show that the accuracy of our system achieves 0.9148, which demonstrates our system effectively recommends suitable Buddhist quotes when writing.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
参考文献
  1. Ahn, Y.,Lee, H.,Jeon, H.,Ha, S.,Lee, S.-g.(2016).Quote recommendation for dialogs and writings.CBRecSys 2016,Boston, MA:
  2. Aizerman, M. A.(1964).Theoretical foundations of the potential function method in pattern recognition learning.Automation and remote control,25,821-837.
  3. Cho, K.,Van Merrienboer, B.,Gulcehre, C.,Bahdanau, D.,Bougares, F.,Schwenk, H.,Bengio, Y.(2014).Learning phrase representations using RNN encoder-decoder for statistical machine translation.Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,Doha, Qatar:
  4. Devlin, J.,Chang, M.-W.,Lee, K.,Toutanova, K.(2018).,未出版
  5. He, Q.,Pei, J.,Kifer, D.,Mitra, P.,Giles, L.(2010).Context-aware citation recommendation.WWW’10: Proceedings of the 19th International Conference on World Wide Web,New York, NY:
  6. Huang, W.,Kataria, S.,Caragea, C.,Mitra, P.,Giles, C. L.,Rokach, L.(2012).Recommending citations: Translating papers into references.CIKM’12: Proceedings of the 21st ACM International Conference on Information and Knowledge Management,New York, NY:
  7. Huang, W.,Wu, Z.,Liang, C.,Mitra, P.,Giles, C. L.(2015).A neural probabilistic model for context based citation recommendation.Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,Palo Alto, CA:
  8. Lee, H.,Ahn, Y.,Lee, H.,Ha, S.,Lee, S.-g.(2016).Quote recommendation in dialogue using deep neural network.Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval,New York, NY:
  9. Liu, Y.,Liu, B.,Shan, L.,Wang, X.(2018).Modelling context with neural networks for recommending idioms in essay writing.Neurocomputing,275,2287-2293.
  10. Liu, Y.,Pang, B.,Liu, B.(2019).Neural-based Chinese idiom recommendation for enhancing elegance in essay writing.Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Florence, Italy:
  11. Pazzani, M. J.,Billsus, D.(2007).Content-based recommendation systems.The adaptive web: Methods and strategies of web personalization,Berlin, Germany:
  12. Strohman, T.,Croft, W. B.,Jensen, D.(2007).Recommending citations for academic papers.SIGIR’07: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,New York, NY:
  13. Tan, J.,Wan, X.,Liu, H.,Xiao, J.(2018).QuoteRec: Toward quote recommendation for writing.ACM Transactions on Information Systems,36(3),1-36.
  14. Tan, J.,Wan, X.,Xiao, J.(2015).Learning to recommend quotes for writing.Proceedings of the AAAI Conference on Artificial Intelligence,29(1),2453-2459.
  15. Tan, J.,Wan, X.,Xiao, J.(2016).A neural network approach to quote recommendation in writings.Proceedings of the 25th ACM International on Conference on Information and Knowledge Management,New York, NY:
  16. Vapnik, V. N.(1999).The nature of statistical learning theory.New York, NY:Springer.
  17. Vaswani, A.,Shazeer, N.,Parmar, N.,Uszkoreit, J.,Jones, L.,Gomez, A. N.,Polosukhin, I.(2018).Attention is all you need.Advances in neural information processing systems 30,Red Hook, NY:
  18. Wang, L.,Li, J.,Zeng, X.,Zhang, H.,Wong, K.-F.(2020).Continuity of topic, interaction, and query: Learning to quote in online conversations.Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
  19. Wang, L.,Zeng, X.,Wong, K.-F.(2021).Quotation recommendation and interpretation based on transformation from queries to quotations.Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
  20. 王皓儀(2019)。臺北,國立臺北科技大學電機工程系。
  21. 美團技術團隊(2020)。美團點評 2019 評技術年貨:算法篇。取自 https://s3plus.meituan.net/v1/mss_e63d09aec75b41879dcb3069234793ac/file/%E7%AE%97%E6%B3%95%E7%AF%87.pdf。