题名

應用成長混合模式剖析臺灣青少年憂鬱發展軌跡的異質性:六步驟策略性模式發展機制研究

并列篇名

Application of Growth Mixture Model to Heterogeneous Trajectories of Depressive Moods of Adolescents: A Six-Step Strategic Model Development Mechanism

DOI

10.3966/181665042013120904005

作者

王郁琮(Yu-Chung Lawrence Wang)

关键词

成長混合模式 ; 青少年憂鬱發展軌跡 ; GMM模式建構 ; growth mixture model ; developmental trajectory of depression of adolescence ; GMM model development mechanism

期刊名称

教育研究與發展期刊

卷期/出版年月

9卷4期(2013 / 12 / 31)

页次

119 - 147

内容语文

繁體中文

中文摘要

新興成長混合模式(Growth Mixture Model,簡稱GMM)針對可能存在的潛在異質次群體,進行多元發展軌跡估計,故比起傳統潛在成長曲線模式(Latent Growth Curve Model)基於同質性假設而僅以單一軌跡進行整體成長歷程描述,顯得更加詳盡但模式結構也更複雜。當研究者進行GMM分析卻缺乏一套策略性建構機制時,極易造成過度依賴資料探索,並遭致模式無法收斂的窘境。本研究旨在發展一套步驟明確的GMM標準化建構策略,做為實徵應用分析研究的參考準則;並以臺灣青少年研究從國一至高三所蒐集之六波段憂鬱症狀實徵資料進行示範分析。研究結果顯示,作者所發展的六步驟GMM建構機制,除了兼顧理論驗證與分類實質意義,並可有效地提升模式收斂。實徵資料分析結果發現,臺灣青少年從國一到高三的憂鬱發展軌跡可以分為三種類型,包括:持續低孤獨鬱卒感的「合群快樂型」(82.3%)、先低後高的「晚發憂鬱型」(7.7%)、以及先高轉低的「早發憂鬱型」(9.9%)。GMM是目前少數提供具有統計模式基礎的縱貫軌跡分類,針對如何客觀區分發展軌跡次群體,本文的GMM策略發展機制具重大實用意涵。

英文摘要

The recently developed Growth Mixture Mode (GMM) provides multiple trajectories to account for the heterogeneity of population, and is therefore more comprehensive than Latent Growth Curve Model (LGCM) that uses a single trajectory to describe development of all subjects, based on its homogeneity assumption. Nonetheless, without a strategic model development mechanism, researchers often encounter convergence problem with GMM, due to model complexity and flexibility. The aim of this study was to fulfill this deficiency by establishing a standardized step-by-step model development procedure. Results from empirical data showed that the six-step procedure improved the likelihood of model convergence significantly. Results from empirical analyses concluded three classes of developmental trajectory of depression among Taiwanese adolescents including stably low depression, named "cheerful" (82.3%); "start low end high", named "late onset depression"(7.7%); and "start high end low", named "early onset depression" (9.9%). GMM is a promising method with model-based longitudinal classification, and the mechanism proposed makes a significant contribution to GMM application.

主题分类 社會科學 > 教育學
参考文献
  1. 王郁琮,溫福星(2012)。國中生學校學習與家庭關係困擾之群體異質性分析:以IRT Mixture Model。教育心理學報,44(1),185-206。
    連結:
  2. Bauer, D. J.,Curran, P. J.(2003).Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes.Psychological Methods,8(3),338-363.
  3. Bauer, D. J.,Curran, P. J.(2004).The integration of continuous and discrete latent variable models: Potential problems and promising opportunities.Psychological Methods,9(1),3.
  4. Collins, L. M.,Horn, J. L.(1991).Best Methods for the Analysis of Change: Recent Advances, Unanswered Questions, Future Directions.Washington, DC.:American Psychological Association.
  5. Collins, L. M.,Sayer, A.G.(2001).New Methods for the Analysis of Change.Washington, DC:American Psychological Association.
  6. Cudeck, R.,Henly, S. J.(2003).A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003).Psychological Methods,8,378-383.
  7. Derogatis, L. R.(1983).Symptom Checklist-90-R Administration, Scoring and Procedures Manual II.Towson, MD:Clinical Psychometric Research.
  8. Duncan, T. E.,Duncan, S. C.,Strycker, L. A.(2006).An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications.Mahwah, NJ:Lawrence Erlbaum Associates.
  9. Feldman, B. J.,Masyn, K. E.,Conger, R. D.(2009).New approaches to studying problem behaviors: a comparison of methods for modeling longitudinal, categorical adolescent drinking data.Developmental Psychology,45(3),652.
  10. Gueorguieva, R.,Mallinckrodt, C.,Krystal, J. H.(2011).Trajectories of Depression Severity in Clinical Trials of Duloxetine: Insights Into Antidepressant and Placebo Responses.Archives of General Psychiatry,68(12),1227.
  11. Harris, C. W. (Ed.)(1963).Problem in Measuring Change.Madison, WI:University of Wisconsin Press.
  12. Jung, T.,Wickrama, K. A. S.(2007).Recent advances in longitudinal data analysis in social and psychological research: An introduction to latent class growth analysis and growth mixture modeling.Social and Personality Psychology Compass,2,302-331.
  13. Kaplan, D.(Ed.)(2004).Handbook of quantitative methodology for the social sciences.Newbury Park, CA:Sage.
  14. Lo, Y.,Mendell, N. R.,Rubin, D. B.(2001).Testing the number of components in a normal mixture.Biometrika,88(3),767-778.
  15. Masyn, K. E.,Henderson, C. E.,Greenbaum, P. E.(2010).Exploring the Latent Structures of Psychological Constructs in Social Development Using the Dimensional-Categorical Spectrum.Social Development,19(3),470-493.
  16. McLachlan, G.,Peel, D.(2000).Finite mixture models.New York, NY:John Wiley and Sons.
  17. Meredith, W.,Tisak, J.(1990).Latent curve analysis.Psychometrika,55(1),107-122.
  18. Morin, A. J. S.,Maïano, C.,Nagengast, B.,Marsh, H. W.,Morizot, J.,Janosz, M.(2011).General growth mixture analysis of adolescents' developmental trajectories of anxiety: the impact of untested invariance assumptions on substantive interpretations.Structural Equation Modeling: A Multidisciplinary Journal,18(4),613-648.
  19. Muthén, B.(2006).Should substance use disorders be considered as categorical or dimensional?.Addiction,101,6-16.
  20. Muthén, B.(2003).Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran.Psychological Methods,8,369-377.
  21. Muthén, B.(1991).Analysis of longitudinal data using latent variable models with varing parameters.Best methods for the analysis of change,Washington, DC:
  22. Muthén, B.(2001).Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling.New Methods for the Analysis of Change,Washington, DC:
  23. Muthén, B.,Asparouhov, T.(2008).Growth mixture modeling: Analysis with non-Gaussian random effects.Longitudinal Data Analysis,143-165.
  24. Muthén, B.,Brown, C. H.,Hunter, A.,Cook, I. A.,Leuchter, A. F.(2011).General approaches to analysis of course: Applying growth mixture modeling to randomized trials of depression medication.Causality and Psychopathology: Finding the determinants of disorders and their cures,New York, NY:
  25. Muthén, B.,Muthén, L.(2000).Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes.Alcoholism: Clinical and Experimental Research,24,882-891.
  26. Muthén, B.,Shedden, K.(1999).Finite mixture modeling with mixture outcomes using the EM algorithm.Biometrics,55(2),463-469.
  27. Muthén, L. K.,Muthén, B. O.(2010).Mplus User’s Guide.Los Angeles, CA:Muthén & Muthén.
  28. Nagin, D. S.(1999).Analyzing developmental trajectories: a semiparametric, group-based approach.Psychological methods,4(2),139.
  29. Nagin, D. S.,Tremblay, R. E.(2001).Parental and early childhood predictors of persistent physical aggression in boys from kindergarten to high school.Archives of General Psychiatry,58(4),389.
  30. Nylund, K. L.,Asparouhov, T.,Muthén, B. O.(2007).Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study.Structural Equation Modeling,14(4),535-569.
  31. Odgers, C. L.,Moffitt, T. E.,Broadbent, J. M.,Dickson, N.,Hancox, R. J.,Harrington, H.(2008).Female and male antisocial trajectories: From childhood origins to adult outcomes.Development and Psychopathology,20(2),673-716.
  32. Raudenbush, S. W.(2001).Comparing personal trajectories and drawing causal inferences from longitudinal data.Annual Review of Psychology,52(1),501-525.
  33. Raudenbush, S. W.,Bryk, A. S.(2002).Hierarchical Linear Models: Applications and Data Analysis Methods.Thousand Oaks, CA:Sage.
  34. Rindskopf, D.(2003).Mixture or homogeneous? Comment on Bauer and Curran (2003).Psychological Methods,8,364-368.
  35. Rovine, M. J.,Molenaar, P. C. M.(2001).A structural equations modeling approach to the general linear mixed model.New Methods for the Analysis of change,Washington, DC:
  36. Small, B. J.,Bäckman, L.(2007).Longitudinal trajectories of cognitive change in preclinical Alzheimer's disease: A growth mixture modeling analysis.Cortex,43(7),826-834.
  37. Snijders, T. A. B.,Bosker, R. J.(1999).Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling.London, England:Sage.
  38. Tucker, L. R.(1966).Learning theory and multivariate experiment: Illustration by determination of parameters of generalized learning curves.The Handbook of Multivariate Experimental Psychology,Chicago, IL:
  39. Willett, J. B.,Sayer, A. G.(1994).Using covariance structure analysis to detect correlates and predictors of individual change over time.Psychological Bulletin,116(2),363-381.
  40. 王郁琮(2012)。從異質性分析探討國中生霸凌危機與憂鬱情緒之關係:多層次廻歸混合模型。教育與心理研究,35(1),127-153。
  41. 王郁琮。國中生憂鬱發展軌跡類型之性別差異及與違常行為之關係:成長混合模式分析。中華心理衛生學刊
  42. 王郁琮,溫福星(2013)。國中生人際衝突多層次潛在類別Mixture分析。教育與心理研究,36(1),89-116。
  43. 王郁琮,溫福星(2011)。混合因素分析對群體異質性之探討:以國中生學業困擾二元資料為例。教育與心理研究,34(3),37-63。
  44. 伊慶春(2000)。,未出版
被引用次数
  1. 林姿慎,林如萍(2019)。中老年期的憂鬱:以多層次模式探究。人類發展與家庭學報,20,1-23。
  2. 陸偉明,陳亦柔(2022)。自尊、親子與師生關係對青少年至成年初顯期憂鬱症狀發展軌跡之探討。中華輔導與諮商學報,63,71-109。
  3. 王郁琮(2014)。台灣青少年異質性憂鬱發展軌跡之性別差異及與違常行為之關係。中華心理衛生學刊,27(1),97-130。
  4. 周玉慧(2020)。夫妻間之權力來源、衝突因應策略與婚姻品質。中華心理學刊,62(3),391-420。