英文摘要
|
Because of tendency of declining birthrate, it is seen as necessary to consolidate or abolish the small schools. The Ministry of Education then provided "Small School Development Evaluation Indicators" to county and city governments in February 2006. In depth analysis of the indicator data based on Big Data to develop data mining analysis model and operational definition of each indicator, is helpful for county and city governments consolidating small schools. This article aims to study how to integrate different databases based on Big Data thinking, and use data mining methods in education statistics, to facilitate school consolidation. According to the Ministry of Education indicators, this article integrated governance databases to collect the related data of all elementary schools. This article used supervised models, including Classification and Regression Tree, Neural Network, Decision Tree, Support Vector Machine, and Bayesian Network. The results reveal that five models have higher correction rate and are easy to read. According to the results, when consolidating small schools, education, population and geographic databases should be integrated. Besides, empirical data assessment and supervision should be adopted. The governance institution and each school can adopt operational definition of each indicator to calculate the relative position.
|
参考文献
|
-
West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Retrieved from http://www.brookings.edu/research/papers/2012/09/04-educationtechnology-west
-
Adams, J. E., Jr.,Foster, E. M.(2002).District size and state educational costs: Should consolidation follow school finance reform?.Journal of Education Finance,27(3),833-855.
-
Bard, J.,Gardener, C.,Wieland, R.(2006).Rural school consolidation: History, research summary, conclusions, and recommendations.The Rural Educator,27(2),40-48.
-
Chrysostomou, K.,Chen, S. Y.,Liu, X.(2009).Investigation of users' preferences in interactive multimedia learning systems: A data mining approach.Interactive Learning Environments,17(2),151-163.
-
Cohen, F.(2003).Mining data to improve teaching.Educational Leadership,60(8),53-56.
-
Fowler, F. J., Jr.(2002).Survey research methods.Thousand Oaks, CA:Sage.
-
Franklin, D.,Andrews, J.(2012).Mega change: The world in 2050.Hoboken, NJ:John Wiley & Sons.
-
Hung, J.-L.,Crooks, S. M.(2009).Examining online learning patterns with data mining techniques in peer-moderated and teacher-moderated courses.Journal of Educational Computing Research,40(2),183-210.
-
Kennedy, L.,Lee, Y.,Roy, van B.,Reed, C. D.,Lippman, R. P.(1997).Solving data mining problems through pattern recognition.Upper Saddle River, NJ:Prentice-Hall.
-
Leacha, J.,Paynea, A. A.,Chan, S.(2010).The effects of school board consolidation and financing on student performance.Economics of Education Review,29,1034-1046.
-
Loshin, D.(2013).Big data analytics: From strategic planning to enterprise integration with tools, techniques, NoSQL, and graph.Waltham, MA:Morgan Kaufmann.
-
Luan, J.,Zhao, C.-M.,Hayek, J. C.(2009).Using a data mining approach to develop a student engagement-based institutional typology.IR Applications,18
-
Masunaga, H.,Lewis, T.(2011).Self-perceived dispositions that predict challenges during student teaching: A data mining analysis.Issues in Teacher Education,20(1),35-49.
-
Mayer-Schönberger, V,Cukier, K.(2013).Big data: A revolution that will transform how we live, work, and think.New York, NY:Houghton Mifflin Harcourt.
-
Niemi, D.,Gitin, E.(2012).Using big data to predict student dropouts: Technology affordances for research.International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in Digital Age (CELDA),Madrid, Spain:
-
Picciano, A. G.(2012).The evolution of big data and learning analytics in American higher education.Journal of Asynchronous Learning Networks,16(3),9-20.
-
Romero, C.(Ed.),Ventura, S.(Ed.),Pechenizkiy, M.(Ed.),Baker, R. S.(Ed.)(2011).Handbook of educational data mining.Boca Raton, FL:CRC.
-
Silver, N.(2012).The signal and the noise: Why so many predictions fail-but some don't.New York, NY:Penguin.
-
Surface, J.(2011).Assessing the impact of twenty-first century rural school consolidation.International Journal of Educational Leadership Preparation,6(2),1-13.
-
Vandamme, J.-P.,Meskens, N.,Superby, J.-F.(2007).Predicting academic performance by data mining methods.Education Economics,15(4),405-419.
-
Wrobel, S. L.(2010).A phenomenological study of rural school consolidation.Journal of Research in Rural Education (Online),25(2),1-19.
-
Zimmer, T.,DeBoer, L.,Hirth, M.(2009).Examining economies of scale in school consolidation: Assessment of Indiana school districts.Journal of Education Finance,35(2),103-127.
-
中華民國監察院(2012)。,未出版
-
牛田一雄、高井勉、木暮大輔(1996)。資料採礦利用Clementine 使用手冊。臺北市:鼎茂。
-
吳政達(2006)。少子化趨勢下國民中小學學校經濟規模政策之研究。教育政策論壇,9(1),23-41。
-
宋吉永、陳姿穎譯(2013)。Big data:讓你看見真實欲望。臺北市:精誠資訊。
-
林雍智(2006)。日本實施中小學校整併的情形對我國之啟示。教育行政與評鑑學刊,1,135-157。
-
邱宏彬、許依宸(2011)。資料採礦在學生流失偵測上之應用。資訊管理研究,11,83-99。
-
城田真琴、鐘慧真譯、梁世英譯(2013)。Big data 大數據的獲利模式。臺北市:經濟新潮社。
-
胡世忠(2013)。雲端時代的殺手級應用:Big data 海量資料分析。臺北市:天下雜誌。
-
翁秉逸、謝明哲(2013)。應用資料採礦技術於中途輟學線上預警系統之實現。TANET 2013 臺灣網際網路研討會,臺中市:
-
張云濤、龔玲(2007)。資料探勘原理與技術:Data mining、AI、Algorithm。臺中市:五南。
-
張志明(2012)。實施國中小裁併校必須考量的政策思維。臺灣教育評論月刊,1(14),5-6。
-
張鈿富、林松柏(2012)。資料採礦分析PISA 閱讀素養之影響因素。教育政策論壇,15(4),95-128。
-
曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005)。資料探勘。臺北市:旗標。
-
廖述賢、溫志皓(2011)。資料探勘理論與應用:以IBM SPSS Modeler 為範例。新北市:博碩文化。
-
劉世閔(2012)。績效與平等之風雲又起:小校裁併之我見。臺灣教育評論月刊,1(14),1-4。
-
謝邦昌編(2005)。資料採礦與商業智慧:SQL server 2005。臺北市:鼎茂。
|