题名

應用動態差異演化法於傅立葉三維表面形貌濾波器之研究

并列篇名

Application of Dynamic Differential Evolution for 3D Fourier Surface Profile Filter Design in Fringe Projection

作者

黃中信(Chung-Hsin Huang)

关键词

傅立葉轉換輪廓儀 ; 中通濾波器 ; 三維表面形貌量測 ; 動態差異演化法 ; 結構光投影法 ; Fourier transform profilometry ; band-pass filter ; cubic spline interpolation ; 3-D fringe imaging problems ; dynamic differential evolution ; structured light

期刊名称

台北海洋科技大學學報

卷期/出版年月

11卷2期(2020 / 09 / 01)

页次

101 - 121

内容语文

繁體中文

中文摘要

文提出一最佳化結構光投影系統之濾波器設計方法,利用投影平行條紋,並使用CCD數位相機記錄因物體高度變化而扭曲的條紋,經由數位電腦分析運算該扭曲條紋配合動態差異演化法(Dynamic Differential Evolution)進行傅立葉頻譜濾波器設計,藉以提升逆推物體三維形貌品質。本研究引進動態差異演化法進行樣條函數之最佳化,進行有效頻譜區域濾波進行三維頻譜最佳化濾波器設計,發展創新濾波器還原物體相位,獲得最佳三維相位頻譜,以提升物體三維表面形貌量測之精確度,以還原物體受不理想因素而被干擾之相位頻譜及其三維表面形貌資訊,提供即時與動態物體三維量測之相關議題之具體應用參考實例。

英文摘要

Parallel fringe patterns in one shot projection on an object and the deformed fringe is captured using a charge-coupled device (CCD) camera in Fourier Transform Profilometry. The height of three-dimensional (3-D) profile of the object can be obtained by the processing and analysis of the deformed fringes by the Fourier spectrum. The Fourier Transform Profilometry use to generating 3-D surface information have been extensively studied for many applications because of their intrinsic non-contact measurement and its high speed in nature. To obtain accurate 3D surface shape, the phase information of the object deforms the fringe pattern by introducing one shot projection, and usually requiring spatial or temporal phase unwrapping processes. However, the phase unwrapping process is confined by undesirable effects, such as DC term and noise etc. These undesirable effects will bring out the retrieved phase non-continuously. In this paper, we focus on the one shot and fast and robust against noise using band-pass filter design for Fourier Transform Profilometry. The innovative band-pass filter based on Cubic Spline Interpolation are applied to retrieved the phase information via the dynamic differential evolution (DDE). The experimental results show that the phase information can be successfully optimized to generate 3-D surface models in terms of measurement accuracy and efficiency for 3-D surface profile surface measurement of object.

主题分类 人文學 > 人文學綜合
工程學 > 工程學綜合
参考文献
  1. Batlle, J.,Mouaddib, E.M.,Salvi, J.(2004).Pattern codification strategies in structured light systems.Pattern Recognition,37(2),827-849.
  2. Chen, L. Ho, H.,Nguyen, X.(2010).Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction.Optics and Lasers in Engineering,48(2),182-190.
  3. Chen, L. Nguyen,Ho, H.(2008).High-speed 3-D Machine Vision Employing Fourier Transform Profilometry with Digital Tilting-Fringe Projection.IEEE Conference on Advanced Robotics and its Social Impacts,Taipei, Taiwan:
  4. Chen, L.,Tien, I.(2012).Design and Characterization of Band-pass Filters in Fourier Transform Profilometry for Accurate 3-D Surface Measurement.2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),Graz, Austria:
  5. Fu, Y.,Zou,Xiao, H.,Chai, M.(2007).3D profilometry reconstructs based on two-frequency projecting grating method.Proceedings of SPIE,Wuhan, China:
  6. Geng, J.(2011).Structured-light 3D surface imaging: a tutorial.Advances in Optics and Photonics,3(2),128-160.
  7. Guan, C.,Hassebrook, L. G.,Lau, D. L.(2003).Composite structured light pattern for three dimensional video.Optical Express,11(5),406-417.
  8. Herraez, M. A.,Burton, D. R.,Lalor, M. J.(1999).Accelerating fast Fourier transform and filtering operations in Fourier fringe analysis for accurate measurement of three-dimensional surfaces.Optics and Lasers in Engineering,31(2),135-145.
  9. Herraez, M.A.,Burton, D.R.,Lalor, M.J.(2006).Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet trans form.Optics Communications,266(2),482-489.
  10. Huang, P. S.,Zhang, S.(2006).A fast three-step phase shifting algorithm.Applied Optics,45(21),5086-5091.
  11. Huang, P.,Hu, Q.,Jin, F,Chiang, F.(2003).Color-encoded digital fringe projection technique for high-speed 3-D surface contouring.Optical Engineering,38(6),1065-1071.
  12. Jia, P.,Kofman, J.,English, C.(2007).Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement.Optical Engineering,46(8),083201.
  13. Judge, T.(1994).A review of phase unwrapping techniques in fringe analysis.Optics and Lasers in Engineering,21,199-239.
  14. Li, C.L.,Chien, W.,Huang, C. H.,Chiu, C. C.(2010).Time Domain Microwave Imaging for a Buried Dielectric Cylinder by Dynamic Differential Evolution.International Journal of Applied Electromagnetics and Mechanics,34(2),73-86.
  15. Lin, J.F.,Su, X.Y.(1995).Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes.Optical Engineering,34(11),3297-302.
  16. Nguyen, M.,Ghim, Y.-S.,Rhee H.-G(2019).Single-shot deflectometry for dynamic 3D surface profile measurement by modified spatial-carrier frequency phase-shifting method.Scientific Reports,9,1-15.
  17. Servin, M.,Cuevas, F.J.,Malacara, D.,Marroquin, J.L.,Rodriguez- Vera,R(1999).Phase unwrapping through demodulation using the RPT technique.Applied Optics,38(10),1934-1940.
  18. Srinivasan,V.,Liu, H.C,Halioua, M.(1984).Automated phase-measuring profilometry of 3-D diffuse objects.Applied Optics,23(18),3105-3108.
  19. Storn, R.M.,Price, K.(1997).Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.Journal of Global Optimization,11(4),341-359.
  20. Su, X.,Xue, L.(2001).Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry.Optical Engineering,40(4),637-643.
  21. Su, X.,Zhang, Q,Li, J.(2006).Optical 3D shape measurement for vibrating drumhead.Proceedings of SPIE,6027,60721P.
  22. Takeda, M.,Ina, H.,Kobayashi, S.(1982).Fourier-transform method of fringe - pattern analysis for computer-based topography and interferometry.Journal of the Optical Society of America,72(1),156-160.
  23. Takeda, M.,Yamamoto, H.(1994).Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces.Applied Optics,33(34),7829-7837.
  24. Yi, J.,Huang, S.(1997).Modified Fourier transform profilometry for the measurement of 3-D steep shapes.Optics and Lasers in Engineering,27(5),493-505.
  25. Zhang, S.,Yau, S.T.(2006).High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method.Optical Express,14(7),2644-2649.