题名

Rapid changes of miRNAs-20, -30, -410, -515, -134, and -183 and telomerase with psychological activity: A one year study on the relaxation response and epistemological considerations

DOI

10.1016/j.jtcme.2021.02.005

作者

Carlo Dal Lin;Mariela Marinova;Laura Brugnolo;Giorgio Rubino;Mario Plebani;Sabino Iliceto;Francesco Tona

关键词

Cardiovascular disease ; Inflammation ; Epigenetics ; Telomerase ; Meditation ; microRNA

期刊名称

Journal of Traditional and Complementary Medicine

卷期/出版年月

11卷5期(2021 / 09 / 01)

页次

409 - 418

内容语文

英文

中文摘要

Background and aim: Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by which stress produces its deleterious effects is still under study, but one of the most explored pathways is inflammation-aging and cell senescence. In this scenario, circulating microRNAs appear to be regulatory elements of the telomerase activity and alternative splicing within the nuclear factor kappa-light-chain-enhancer (NF-ĸB) network. Anti-stress techniques appeared to be able to slow down the inflammatory and aging processes. As we recently verified, the practice of the relaxation response (RR) counteracted psychological stress and determined favorable changes of the NF-ĸB, p53, and toll-like receptor-4 (TLR-4) gene expression and in neurotransmitters, hormones, cytokines, and inflammatory circulating microRNAs. We aimed to verify a possible change in the serum levels of six other micro-RNAs of cardiovascular interest, involved in cell senescence and in the NF-ĸB network (miRNAs -20, -30, -410, -515, -134, and -183), and tested the activity of telomerase in peripheral blood mononuclear cells (PBMCs). Experimental procedure: We measured the aforementioned molecules in the serum of patients with ischemic heart disease (and healthy controls) immediately before and after a relaxation response session, three times (after the baseline), in one year of follow-up. Results: According to our data, the miRNA-20 and -30 levels and PBMCs-telomerase activity increased during the RR while the -410 and -515 levels decreased. During the RR sessions, both miRNA-134 and -183 decreased. Conclusion: The mediators considered in this exploratory work appeared to vary rapidly with the psychological activity (in particular when focused on relaxation techniques) showing that psychological activity should be part of the future research on epigenetics. Epistemological perspectives are also discussed.

主题分类 醫藥衛生 > 中醫藥學
参考文献
  1. Dal, Lin, C,Marinova, M,Rubino, G(2018).Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction.J Tradit Complement Med,8(1),150-163.
    連結:
  2. A more subtle demonstration that telomere length is not a good measure of aging e fight aging!. https://www.fightaging.org/archives/2018/02/a-more-subtle-demonstration-that-telomere-length-is-not-a-good-measure-of-aging/. Accessed August 4, 2020
  3. miRBase by the Griffiths-Jones lab at the faculty of biology, medicine and health, university of Manchester. http://www.mirbase.org/index.shtml
  4. Ayala, A,Muñoz, MF,Argüelles, S(2014).Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid Med Cell Longev,2014,1-31.
  5. Backes, C,Meese, E,Keller, A(2016).Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects.Mol Diagn Ther,20(6),509-518.
  6. Ball, P.(2008).Water as an active constituent in cell biology.Chem Rev.,108(1),74-108.
  7. Bell J(1990).Against “measurement.Phys World,33-41.
  8. Bilsland, AE,Revie, J,Keith, W(2013).MicroRNA and senescence: the senectome, integration and distributed control.Crit Rev Oncog,18(4),373-390.
  9. Bottaccioli, F,Bottaccioli, AG(2017).Psiconeuroendocrinoimmunologia e Scienza Della Cura Integrata. Il Manuale.Edra.
  10. Cai, D,Hong, S,Yang, J,San, P(2020).The effects of microRNA-515-5p on the toll-like receptor 4 (TLR4)/JNK signaling pathway and WNT1-inducible-signaling pathway protein 1 (WISP-1) expression in rheumatoid arthritis fibroblast-like synovial (RAFLS) cells following treatment with receptor act.Med Sci Mon Int Med J Exp Clin Res.,3,e920611.
  11. Capitanio, JP(2008).Personality and disease.Brain Behav Immun,22(5),647-650.
  12. Chan, SRWL,Blackburn, EH(2004).Telomeres and telomerase.Philos Trans R Soc Lond Ser B Biol Sci,359(1441),109-122.
  13. Chen, GY,Nuñez, G(2010).Sterile inflammation: sensing and reacting to damage.Nat Rev Immunol,10(12),826-837.
  14. Childs, BG,Durik, M,Baker, DJ,van Deursen, JM(2015).Cellular senescence in aging and age-related disease: from mechanisms to therapy.Nat Med,21(12),1424-1435.
  15. Chrousos, GP(2009).Stress and disorders of the stress system.Nat Rev Endocrinol,5,374-381.
  16. Condorelli, G,Latronico, MVG,Dorn, GW(2010).microRNAs in heart disease: putative novel therapeutic targets?.Eur Heart J.,31(6),649-658.
  17. Dal Lin, C,Gola, E,Brocca, A(2018).miRNAs may change rapidly with thoughts: the Relaxation Response after myocardial infarction.Eur J Integr Med.,20,63-72.
  18. Dal Lin, C,Poretto, A,Scodro, M,Perazzolo Marra, M,Iliceto, S,Tona, F(2015).Coronary microvascular and endothelial function regulation: crossroads of psychoneuroendocrine immunitary signals and quantum physics.J Integr Cardiol,1(5),132-209.
  19. Dambal, S,Shah, M,Mihelich, B,Nonn, L(2015).The microRNA-183 cluster: the family that plays together stays together.Nucleic Acids Res,43(15),7173-7188.
  20. de Magalhães, JP,Passos, JF(2018).Stress, cell senescence and organismal ageing.Mech Ageing Dev,170,2-9.
  21. Deschênes, M,Chabot, B(2017).The emerging role of alternative splicing in senescence and aging.Aging Cell,16(5),918-933.
  22. di Gennaro, A,Damiano, V,Brisotto, G(2018).A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness.Cell Death Differ,25(12),2165-2180.
  23. Epel, ES(2009).Psychological and metabolic stress: a recipe for accelerated cellular aging?.Hormones,8(1),7-22.
  24. Epel, ES,Blackburn, EH,Lin, J(2004).Accelerated telomere shortening in response to life stress.Proc Natl Acad Sci U S A.,101(49),17312-17315.
  25. Fani Marvasti, F,Stafford, RS(2012).From sick care to health care - reengineering prevention into the U.S. System.N Engl J Med,367,889-891.
  26. Feliciano, A,Sánchez-Sendra, B,Kondoh, H,LLeonart, ME(2011).MicroRNAs regulate key effector pathways of senescence.J Aging Res,2011,1-11.
  27. Ferro, E,Bena, CE,Grigolon, S,Bosia, C(2019).From endogenous to synthetic microRNA-mediated regulatory circuits: an overview.Cells,8(12),1540.
  28. Flor, AC,Doshi, AP,Kron, SJ(2016).Modulation of therapy-induced senescence by reactive lipid aldehydes.Cell Death Discov,2(1),16045.
  29. Fox, KCR,Dixon, ML,Nijeboer, S(2016).Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations.Neurosci Biobehav Rev,65,208-228.
  30. Gacoń, J,Kabłak-Ziembicka, A,Stępień, E(2016).Decision-making microRNAs (miR-124,-133a/b,-34a and-134) in patients with occluded target vessel in acute coronary syndrome.Kardiol Pol,74,280-288.
  31. Giannoni, A,Baruah, R,Leong, T(2014).Do optimal prognostic thresholds in continuous physiological variables really exist? Analysis of origin of apparent thresholds, with systematic review for peak oxygen consumption, ejection fraction and BNP.PloS One,9(1)
  32. Gil, P,Fariñas, F,Casado, A,López-Fernández, E(2002).Malondialdehyde: a possible marker of ageing.Gerontology,48(4),209-214.
  33. Hölzel, BK,Carmody, J,Evans, KC(2009).Stress reduction correlates with structural changes in the amygdala.Soc Cognit Affect Neurosci,5(1),11-17.
  34. Ioannidis, JPA(2005).Why most published research findings are false.PLoS Med,2(8),0696-0701.
  35. Jacobs, TL,Epel, ES,Lin, J(2011).Intensive meditation training, immune cell telomerase activity, and psychological mediators.Psychoneuroendocrinology,36(5),664-681.
  36. Jimenez-Mateos, EM,Engel, T,Merino-Serrais, P(2012).Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects.Nat Med.,18(7),1087-1094.
  37. Jing, H,Lee, S(2014).F-kB in cellular senescence and cancer treatment.Mol Cell,37(3),189-195.
  38. Karin, M(ed.)(2011).NF-KB in Health and Disease.Berlin, Heidelberg:Springer Berlin Heidelberg.
  39. Keng, BMH,Gao, F,Ewe, SH(2019).Galectin-3 as a candidate upstream biomarker for quantifying risks of myocardial ageing.ESC Heart Fail,6(5),1068-1076.
  40. Khosla, S,Farr, JN,Tchkonia, T,Kirkland, JL(2020).The role of cellular senescence in ageing and endocrine disease.Nat Rev Endocrinol,16(5),263-275.
  41. Kiecolt-Glaser, JK,McGuire, L,Robles, TF,Glaser, R(2002).Psychoneuroimmunology: psychological influences on immune function and health.J Consult Clin Psychol,70(3),537-547.
  42. Kosik, KS(2010).MicroRNAs and cellular phenotypy.Cell,143(1),21-26.
  43. Lee, SY,Lee, J,Lee, H(2016).MicroRNA134 mediated upregulation of JNK and downregulation of NF k B signalings are critically involved in dieckol induced antihepatic fibrosis.J Agric Food Chem,64(27),5508-5514.
  44. Levine, GN,Lange, RA,Bairey-Merz, CN(2017).Meditation and cardiovascular risk reduction.J Am Heart Assoc,6(10),e002218.
  45. Li, QJ,Chau, J,Ebert, PJR(2007).miR-181a is an intrinsic modulator of T cell sensitivity and selection.Cell,129(1),147-161.
  46. Li, Y,Xu, X,Wang, L(2015).Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression.Cell Biosci,5(1),21.
  47. Lin, Dal C,Brugnolo, L,Marinova, M(2020).Toward a unified view of cognitive and biochemical activity: meditation and linguistic self-reconstructing may lead to inflammation and oxidative stress improvement.Entropy,22(8),818.
  48. Lin, Dal C,Falanga, M,De Lauro, E,De Martino, S,Vitiello, G(2021).Biochemical and biophysical mechanisms underlying the heart and the brain dialog.AIMS Biophys,8(1),1-33.
  49. Lin, Dal C,Grasso, R,Scordino, A(2020).Ph, electric conductivity and delayed luminescence changes in human sera of subjects undergoing the relaxation response: a preliminary study and theoretical considerations.Organisms: J Biol Sci.,4(2),15-29.
  50. Lin, Dal C,Radu, CM,Vitiello, G(2020).Sounds stimulation on in vitro HL1 cells: a pilot study and a theoretical physical model.Int J Mol Sci.,22(1),156.
  51. Liu, T,Zhang, L,Joo, D,Sun, S-C(2017).NF-kB signaling in inflammation.Signal Transduct Target Ther,2(1),17023.
  52. Liu, X,Shao, Y,Zhou, J,Qian, G,Ma, Z(2020).Nuclear factor κB signaling and its related non-coding RNAs in cancer therapy.Mol Ther Nucleic Acids.,19,208-217.
  53. Markopoulos, G,Roupakia, E,Tokamani, M(2018).Roles of NF-κB signaling in the regulation of miRNAs impacting on inflammation in cancer.Biomedicines,6(2),40.
  54. Mather, KA,Jorm, AF,Parslow, RA,Christensen, H(2011).Is telomere length a biomarker of aging? A review.J Gerontol Ser A Biol Sci Med Sci,66A(2),202-213.
  55. McCormack, J,Vandermeer, B,Allan, GM(2013).How confidence intervals become confusion intervals.BMC Med Res Methodol,13,134.
  56. McEwen, BS(2007).Physiology and neurobiology of stress and adaptation: central role of the brain.Physiol Rev,87(3),873-904.
  57. Meerson, A,Cacheaux, L,Goosens, KA,Sapolsky, RM,Soreq, H,Kaufer, D(2010).Changes in brain MicroRNAs contribute to cholinergic stress reactions.J Mol Neurosci,40(1-2),47-55.
  58. Meier, HCS,Hussein, M,Needham, B(2019).Cellular response to chronic psychosocial stress: ten-year longitudinal changes in telomere length in the Multi-Ethnic Study of Atherosclerosis.Psychoneuroendocrinology,107,70-81.
  59. Meloni, M(2014).The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology.Front Hum Neurosci,8,309.
  60. Meshorer E, Bryk B(2005).SC35 Promotes Sustainable Stress-Induced Alternative Splicing of Neuronal Acetylcholinesterase mRNA.Mol Psychiatry,10(11)
  61. Meshorer, E,Soreq, H(2002).Pre-mRNA splicing modulations in senescence.Aging Cell,1(1),10-16.
  62. O’Neill, LA,Sheedy, FJ,McCoy, CE(2011).MicroRNAs: the fine-tuners of Toll-like receptor signalling.Nat Rev Immunol,11(3),163-175.
  63. Olivieri, F,Prattichizzo, F,Grillari, J,Balistreri, CR(2018).Cellular senescence and inflammaging in age-related diseases.Mediat Inflamm,2018,1-6.
  64. Openo, KP,Kadrofske, MM,Patterson, RJ,Wang, JL(2000).Galectin-3 expression and subcellular localization in senescent human fibroblasts.Exp Cell Res,255(2),278-290.
  65. Paeschke, N,von Haefen, C,Endesfelder, S,Sifringer, M,Spies, C(2017).Dexmedeto-midine prevents lipopolysaccharide-induced MicroRNA expression in the adult rat brain.Int J Mol Sci,18(9),1830.
  66. Park, D,Kim, H,Kim, Y,Jeoung, D(2016).miR-30a regulates the expression of CAGE and p53 and regulates the response to anti-cancer drugs.Mol Cell,39(4),299-309.
  67. Pavanello,Campisi,Tona,Lin,Iliceto(2019).Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age.Int J Environ Res Publ Health,16(17),3074.
  68. Poller, W,Dimmeler, S,Heymans, S(2018).Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives.Eur Heart J.,39(29),2704-2716.
  69. Qu, X,Han, J,Zhang, Y(2019).TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation during experimental autoimmune encephalomyelitis development.J Neuroinflammation,16(1),183.
  70. Razgonova, M,Zakharenko, A,Golokhvast, K(2020).Telomerase and telomeres in aging theory and chronographic aging theory (Review).Mol Med Rep.,22(3),1679-1694.
  71. Reddy, PH,Williams, J,Smith, F(2017).MicroRNAs, aging, cellular senescence, and Alzheimer’s disease.Prog Mol Biol Transl Sci.,146,127-171.
  72. Rentscher, KE,Carroll, JE,Repetti, RL,Cole, SW,Reynolds, BM,Robles, TF(2019).Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a.Psychoneuroendocrinology,102,139-148.
  73. Romaine, SPR,Tomaszewski, M,Condorelli, G,Samani, NJ(2015).MicroRNAs in cardiovascular disease: an introduction for clinicians.Heart,101(12),921-928.
  74. Russo, F,Di Bella, S,Nigita, G(2012).miRandola: extracellular circulating MicroRNAs database.PloS One,2012,7.
  75. Schmidt, S(2014).Meditation - Neuroscientific Approaches and Philosophical Implications.Springer.
  76. Schramme, T(ed.),Edwards, S(ed.)(2017).Handbook of the Philosophy of Medicine.Dordrecht:Springer Netherlands.
  77. Schutte, NS,Malouff, JM(2014).A meta-analytic review of the effects of mindfulness meditation on telomerase activity.Psychoneuroendocrinology,42,45-48.
  78. Scribner(ed.)(2011).Relaxation Revolution. Enhancing Your Personal Health through the Science and Genetics of Mind Body Healing.
  79. Shuang, T,Wang, M,Zhou, Y,Shi, C,Wang, D(2017).NF-kB1, c-Rel, and ELK1 inhibit miR-134 expression leading to TAB1 upregulation in paclitaxel-resistant human ovarian cancer.Oncotarget,8(15),24853-24868.
  80. Soreq, H,Seidman, S(2001).Acetylcholinesterase - new roles for an old actor.Nat Rev Neurosci,2(4),294-302.
  81. Stamm, S,Ben-Ari, S,Rafalska, I(2005).Function of alternative splicing.Gene,344,1-20.
  82. Steptoe, A,Kivimäki, M(2012).Stress and cardiovascular disease.Nat Rev Cardiol,9(6),360-370.
  83. Suh, N.(2018).MicroRNA controls of cellular senescence.BMB Rep,51(10),493-499.
  84. Tabibzadeh, S.(2021).Signaling pathways and effectors of aging.Front Biosci Landmark Ed,26,50-96.
  85. Tawakol, A,Ishai, A,Takx, RA(2017).Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study.Lancet,389(10071),834-845.
  86. Teng Y, Ren F, Xu H, Song H(2019).Overexpression of miRNA-410-3p protects hypoxia-induced cardiomyocyte injury via targeting TRAF5.Eur Rev Med Pharmacol Sci.,23,9050-9057.
  87. Tong, K-L,Mahmood Zuhdi, A,Wan Ahmad, W(2018).Circulating MicroRNAs in young patients with acute coronary syndrome.Int J Mol Sci.,19(5),1467.
  88. Ureña-Peralta, JR,Pérez-Moraga, R,García-García, F,Guerri, C(2020).Lack of TLR4 modifies the miRNAs profile and attenuates inflammatory signaling pathways.PLoS One,15,e0237066.
  89. Victorelli, S,Passos, JF(2017).Telomeres and cell senescence - size matters not.EBioMedicine,21,14-20.
  90. Wadley, AJ,Veldhuijzen van Zanten, JJCS,Paine, NJ,Drayson, MT,Aldred, S(2014).Underlying inflammation has no impact on the oxidative stress response to acute mental stress.Brain Behav Immun,40,182-190.
  91. Wallace, RK(1993).Physiology of Consciousness.Fairfield, Iowa:Maharishi International University Press.
  92. Wang, Y,Xu, N,Zhao, S(2019).miR-410-3p suppresses cytokine release from fibroblast-like synoviocytes by regulating NF-kB signaling in rheumatoid arthritis.Inflammation,42(1),331-341.
  93. Wasserstein, RL,Schirm, AL,Lazar, NA(2019).Moving to a world beyond "p < 0.05.Am Statistician,73(sup1),1-19.
  94. Weckesser, LJ,Plessow, F,Pilhatsch, M,Muehlhan, M,Kirschbaum, C,Miller, R(2014).Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research.Psychoneuroendocrinology,46,88-99.
  95. Williams, J,Smith, F,Kumar, S,Vijayan, M,Reddy, PH(2017).Are microRNAs true sensors of ageing and cellular senescence?.Ageing Res Rev,35,350-363.
  96. Wolkowitz, OM,Mellon, SH,Lindqvist, D(2015).PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression.Psychiatry Res Neuroimaging,232(1),58-64.
  97. Wu, J,Ding, J,Yang, J,Guo, X,Zheng, Y(2018).MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer.Front Immunol,9
  98. Xing, J,Xie, T,Tan, W,Li, R,Yu, C,Han, X(2019).microRNA-183 improve myocardial damager via NF-kb pathway: in vitro and in vivo study.J Cell Biochem,120(6),10145-10154.
  99. Yang, F,Li, T,Dong, Z,Mi, R(2018).MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein.J Cell Biochem,119(2),2427-2439.
  100. Zhao, X,Jia, Y,Chen, H,Yao, H,Guo, W(2019).Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury.Exp Ther Med