题名

Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies

DOI

10.1016/j.jtcme.2021.05.001

作者

Ahmed A. Zaki;Ahmed Ashour;Sameh S. Elhady;Khaled M. Darwish;Ahmed A. Al-Karmalawy

关键词

COVID-19 ; C. officinalis L. ; Triterpenes ; Computational studies ; SAR

期刊名称

Journal of Traditional and Complementary Medicine

卷期/出版年月

12卷1期(2022 / 01 / 01)

页次

16 - 34

内容语文

英文

中文摘要

Background and aim: The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, natural products can provide therapeutic alternatives that could be employed as an effective safe treatment for COVID-19. Experimental procedure: Twelve compounds were isolated from the aerial parts of C. officinalis L. and investigated for their inhibitory activities against SARS-CoV-2 M^(pro) compared to its co-crystallized N3 inhibitor using molecular docking studies. Furthermore, a 100 ns MD simulation was performed for the most active two promising compounds, Calendulaglycoside A (SAP5) and Osteosaponin-I (SAP8). Results and conclusion: At first, molecular docking studies showed interesting binding scores as compared to the N3 inhibitor. Calendulaglycoside A (SAP5) achieved a superior binding than the co-crystallized inhibitor indicating promising affinity and intrinsic activity towards the M^(pro) of SARS-CoV-2 as well. Moreover, findings illustrated preferential stability for SAP5 within the M^(pro) pocket over that of N3 beyond the 40 ns MD simulation course. Structural preferentiality for triterpene-M^(pro) binding highlights the significant role of 17β-glucosyl and carboxylic 3α-galactosyl I moieties through high electrostatic interactions across the MD simulation trajectories. Furthermore, this study clarified a promising SAR responsible for the antiviral activity against the SARS-CoV-2 M^(pro) and the design of new drug candidates targeting it as well. The above findings could be promising for fast examining the previously isolated triterpenes both pre-clinically and clinically for the treatment of COVID-19.

主题分类 醫藥衛生 > 中醫藥學
参考文献
  1. Fuzimoto, AD,Isidoro, C(2020).The antiviral and the coronavirus-host protein pathways inhibiting properties of herbs and natural compounds-Additional weapons in the fight against the COVID-19 pandemic?.J. Tradit. Complementary Med,10(4),405-419.
    連結:
  2. Prasansuklab, A,Theerasri, A,Rangsinth, P,Sillapachaiyaporn, C,Chuchawankul, S,Tencomnao, T(2020).Anti-COVID-19 drug candidates: a review on potential biological activities of natural products in the management of new coronavirus infection.Journal of Traditional and Complementary Medicine
    連結:
  3. Rahman, F,Tabrez, S,Ali, R,Alqahtani, AS,Ahmed, MZ,Rub, A(2021).Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins.Journal of traditional and complementary medicine,11(2),173-179.
    連結:
  4. Rangsinth, P,Sillapachaiyaporn, C,Nilkhet, S,Tencomnao, T,Ung, AT,Chuchawankul, S(2021).Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: an in silico approach.Journal of traditional and complementary medicine,11(2),158-172.
    連結:
  5. Ahmed, B,Khan, RA,Al-Howiriny, TA,Al-Rehaily, AJ(2010).Osteosaponins 1 and 2: two new saponin glycosides from Osteospermum vaillantii.Nat Prod Res,24(13),1258-1267.
  6. Aier, I,Varadwaj, PK,Raj, U(2016).Structural insights into conformational stability of both wild-type and mutant EZH2 receptor.Sci Rep,6(1),1-10.
  7. Al-Karmalawy, AA,Alnajjar, R,Dahab, M,Metwaly, A,Eissa, I(2021).Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease.Pharmaceut Sci
  8. Al-Karmalawy, AA,Dahab, MA,Metwaly, AM(2021).Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor.Frontiers in Chemistry,9,227.
  9. Al-Karmalawy, AA,Khattab, M(2020).Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor.New J Chem.,44(33),13990-13996.
  10. Alnajjar, R,Mostafa, A,Kandeil, A,Al-Karmalawy, AA(2020).Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease.Heliyon,6(12),e05641.
  11. Arnittali, M,Rissanou, AN,Harmandaris, V(2019).Structure of biomolecules through molecular dynamics simulations.Procedia Computer Science,156,69-78.
  12. Arora, D,Rani, A,Sharma, A(2013).A review on phytochemistry and ethnopharmacological aspects of genus Calendula.Phcog Rev.,7(14),179.
  13. Bhardwaj, VK,Singh, R,Das, P,Purohit, R(2021).Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs.Comput Biol Med,128,104117.
  14. Bhardwaj, VK,Singh, R,Sharma, J,Rajendran, V,Purohit, R,Kumar, S(2020).Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.J Biomol Struct Dyn,1-10.
  15. Bogdanova, N,Nikolaeva, I,Shcherbakova, L,Tolstova, T,NIu, M,Pershin, G(1970).Study of antiviral properties of Calendula officinalis.Farmakologiia i toksikologiia,33(3),349-355.
  16. Bringa, E(2003).Molecular dynamics simulations of Coulomb explosion.Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms,209,1-8.
  17. Brogi, S.(2019).Computational Approaches for Drug Discovery.Molecules
  18. Cavasotto, CN(2020).Binding free energy calculation using quantum mechanics aimed for drug lead optimization.Quantum Mechanics in Drug Discovery
  19. da Silva, TU,Pougy, KdC,Albuquerque, MG,da Silva Lima, CH,Machado, SdP(2019).Development of parameters compatible with the CHARMM36 force field for [Fe4S4] 2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019.J Biomol Struct Dyn,1-11.
  20. Daina, A,Michielin, O,Zoete, V(2017).SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci Rep,7(1),1-13.
  21. Darden, T,York, D,Pedersen, L(1993).Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems.J Chem Phys,98(12),10089-10092.
  22. David, CC,Jacobs, DJ(2014).Principal component analysis: a method for determining the essential dynamics of proteins.Methods Mol Biol,1084,193-226.
  23. Davis, IW,Baker, D(2009).RosettaLigand docking with full ligand and receptor flexibility.J Mol Biol,385(2),381-392.
  24. de Souza, AS,Pacheco, BD,Pinheiro, S(2019).3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7.Bioorg Med Chem Lett,29(9),1094-1098.
  25. De Tommasi, N,Conti, C,Stein, ML,Pizza, C(1991).Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis.Planta Med,57(3),250-253.
  26. De Tommasi, N,Pizza, C,Conti, C,Orsi, N,Stein, ML(1990).Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis.J Nat Prod,53(4),830-835.
  27. Dong, Y-w,Liao, M-l,Meng, X-l,Somero, GN.(2018).Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs.Proc Natl Acad Sci Unit States Am,115(6),1274-1279.
  28. Eissa, I,Al-Karmalawy, A,Dahab, MA(2021).Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting hACE2 receptor.Frontiers in Chemistry,9,227.
  29. Eliaa, SG,Al-Karmalawy, AA,Saleh, RM,Elshal, MF(2020).Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mTOR pathway and inhibition of calmodulin: in vitro and molecular docking studies.ACS Pharmacology & Translational Science.,3(6),1330-1338.
  30. Elmaaty, AA,Alnajjar, R,Hamed, MI,Khattab, M,Khalifa, MM,Al-Karmalawy, AA(2021).Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV2 main protease: theoretical study.RSC Adv,11(17),10027-10042.
  31. Elmaaty, AA,Darwish, KM,Khattab, M(2021).In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins.J Biomol Struct Dyn,1-28.
  32. Ghanem, A,Emara, HA,Muawia, S,Abd El Maksoud, AI,Al-Karmalawy, AA,Elshal, MF(2020).Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies.New J Chem.,44(40),17374-17381.
  33. Golo, V,Shaĭtan, K(2002).Dynamic attractor for the Berendsen thermostat an the slow dynamics of biomacromolecules.Biofizika,47(4),611-617.
  34. Helal, MA,Shouman, S,Abdelwaly, A(2020).Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associatedlymphopenia.J Biomol Struct Dyn,1-11.
  35. Hess, B,Bekker, H,Berendsen, HJ,Fraaije, JG(1997).LINCS: a linear constraint solver for molecular simulations.J Comput Chem,18(12),1463-1472.
  36. Humphrey, W,Dalke, A,Schulten, K(1996).VMD: visual molecular dynamics.J Mol Graph,14(1),33-38.
  37. Inc CCG(2016).Inc CCG. Molecular Operating Environment (MOE). Chemical Computing Group Inc 1010 Sherbooke St. West. 2016. Suite# 910, Montreal..
  38. Izadi, S,Anandakrishnan, R,Onufriev, AV(2014).Building water models: a different approach.J Phys Chem Lett,5(21),3863-3871.
  39. Jin, Z,Du, X,Xu, Y(2020).Structure of M pro from SARS-CoV-2 and discovery of its inhibitors.Nature,582(7811),289-293.
  40. Karplus, M,Petsko, GA(1990).Molecular dynamics simulations in biology.Nature,347(6294),631-639.
  41. Keszthelyi, S,Hoffmann, R,Pónya, Z,Pál-Fám, F(2017).Acute and persistence effects of oil of Hippophae rhamnoides and Calendula officinalis on Sitophilus granaries (Coleoptera: Curculionidae) in stored maize.Acta Phytopathol Entomol Hung,52(2),255-264.
  42. Khattab, M,Al-Karmalawy, AA(2021).Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations.Frontiers in Chemistry,9,92.
  43. Kontoyianni, M,McClellan, LM,Sokol, GS(2004).Evaluation of docking performance: comparative data on docking algorithms.J Med Chem,47(3),558-565.
  44. Kulakova, L,Arampatzis, G,Angelikopoulos, P,Hadjidoukas, P,Papadimitriou, C,Koumoutsakos, P(2017).Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations.Sci Rep,7(1),1-10.
  45. Kumari, R,Kumar, R,Consortium, OSDD,Lynn, A(2014).g_mmpbsa- A GROMACS tool for high-throughput MM-PBSA calculations.J Chem Inf Model,54(7),1951-1962.
  46. Li, Q,Kang, C(2020).Progress in developing inhibitors of SARS-CoV-2 3C-like protease.Microorganisms,8(8),1250.
  47. Likić, VA,Gooley, PR,Speed, TP,Strehler, EE(2005).A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics.Protein Sci.,14(12),2955-2963.
  48. Lin, X,Li, X,Lin, X(2020).A review on applications of computational methods in drug screening and design.Molecules,25(6),1375.
  49. McConkey, BJ,Sobolev, V,Edelman, M(2002).The performance of current methods in ligand-protein docking.Curr Sci,845-856.
  50. Mubashar, Sabir, S,Khan, MF,Rocha, JBT,Boligon, AA,Athayde, ML(2015).Phenolic profile, antioxidant activities and genotoxic evaluations of C alendula officinalis.J Food Biochem,39(3),316-324.
  51. Muley, B,Khadabadi, S,Banarase, N(2009).Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review.Trop J Pharmaceut Res,8(5)
  52. Naguib, N,Khalil, M,El Sherbeny, S(2005).A comparative study on the productivity and chemical constituents of various sources and species of Calendula plants as affected by two foliar fertilizers.J Appl Sci Res,1(2),176-189.
  53. Narkhede, RR,Pise, AV,Cheke, RS,Shinde, SD(2020).Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences.Natural products and Bioprospecting,10(5),297-306.
  54. Nevin Gerek, Z,Kumar, S,Banu Ozkan, S(2013).Structural dynamics flexibility informs function and evolution at a proteome scale.Evolutionary applications,6(3),423-433.
  55. Páll, S,Hess, B(2013).A flexible algorithm for calculating pair interactions on SIMD architectures.Comput Phys Commun,184(12),2641-2650.
  56. Pandey, B,Grover, S,Goyal, S(2018).Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region.Sci Rep,8(1),1-13.
  57. Pirolli, D,Sciandra, F,Bozzi, M,Giardina, B,Brancaccio, A,De Rosa, MC(2014).Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model.PloS One.,9(7),e103866.
  58. Pizza, C,Zhong-Liang, Z,de Tommasi, N(1987).Plant metabolites. Triterpenoid saponins from Calendula arvensis.J Nat Prod,50(5),927-931.
  59. Rastogi, S,Pal, R,KULSHREsHTHA, DK(1994).KULSHREsHTHA DK. Bacoside A3 A triterpenoid saponin from Bacopa monniera.Phytochemistry,36(1),133-137.
  60. Rizzuti, B,Grande, F,Conforti, F(2021).Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: implications for drug design of quercetin analogs.Biomedicines,9(4),375.
  61. Ross, GA,Rustenburg, AS,Grinaway, PB,Fass, J,Chodera, JD(2018).Biomolecular simulations under realistic macroscopic salt conditions.J Phys Chem B.,122(21),5466-5486.
  62. Samra, RM,Soliman, AF,Zaki, AA(2021).Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L..South Afr J Bot.,139,210-216.
  63. Schreiner, W,Karch, R,Knapp, B,Ilieva, N(2012).Relaxation estimation of RMSD in molecular dynamics immunosimulations.Computational and Mathematical Methods in Medicine
  64. Schrödinger, L.(2015).Schrödinger L. The PyMOL Molecular Graphics System. November; 2015. Version 1.8..
  65. Srikumar, P,Rohini, K,Rajesh, PK(2014).Molecular dynamics simulations and principal component analysis on human laforin mutation W32G and W32G/K87A.Protein J,33(3),289-295.
  66. Suárez, D,Díaz, N(2020).SARS-CoV-2 main protease: a molecular dynamics study.J Chem Inf Model
  67. Szakiel, A,Ruszkowski, D,Grudniak, A(2008).Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).Planta Med,74(14),1709.
  68. Tuble, SC,Anwar, J,Gale, JD(2004).An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure.J Am Chem Soc.,126(1),396-405.
  69. Ukiya, M,Akihisa, T,Yasukawa, K,Tokuda, H,Suzuki, T,Kimura, Y(2006).Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers.J Nat Prod,69(12),1692-1696.
  70. Vanommeslaeghe, K,Hatcher, E,Acharya, C(2010).CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J Comput Chem,31(4),671-690.
  71. Vecherko, L,Sviridov, A,Zinkevich, É,Kogan, LM(1974).Structures of calendulosides G and H from the roots of Calendula officinalis.Chem Nat Compd,548-549.
  72. Vecherko, L,Zinkevich, E,Kogan, LM(1973).Oleanolic acid 3-O-beta-D-glucuronopyranoside from the roots of Calendula officinalis.Chem Nat Compd,530-531.
  73. Verma, S,Twilley, D,Esmear, T(2020).Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19).Front Pharmacol,11,1514.
  74. Yoshikawa, M,Murakami, T,Kishi, A,Kageura, T,Matsuda, H(2001).Medicinal flowers. III. Marigold.(1): hypoglycemic, gastric emptying inhibitory, and gastro-protective principles and new oleanane-type triterpene oligoglycosides, calendasaponins A, B, C, and D, from Egyptian Calendula officinalis.Chem Pharm Bull,49(7),863-870.
  75. Zaki, AA,Al-Karmalawy, AA,El-Amier, YA,Ashour, A(2020).Molecular docking reveals the potential of Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease.New J Chem.,44(39),16752-16758.
  76. Zaki, AA,Qiu, L(2020).Machaerinic acid 3-O-β-D-glucuronopyranoside from Calendula officinalis.Nat Prod Res.,34(20),2938-2944.
  77. Zhang, L,Lin, D,Sun, X(2020).Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science,368(6489),409-412.
被引用次数
  1. Lee-Yan Sheen,Ciro Isidoro,Ashley Chiung-Fang Chang(2022).Natural products as a source of novel drugs for treating SARS-CoV2 infection.Journal of Traditional and Complementary Medicine,12(1),1-5.
  2. Vijay Kumar Bhardwaj,Sanjay Kumar,Rituraj Purohit,Rahul Singh,Jatin Sharma(2022).In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors.Journal of Traditional and Complementary Medicine,12(1),35-43.