题名

Exploring the therapeutic nature of limonoids and triterpenoids against SARS-CoV-2 by targeting nsp13, nsp14, and nsp15 through molecular docking and dynamics simulations

DOI

10.1016/j.jtcme.2021.12.002

作者

Seshu Vardhan;Suban K. Sahoo

关键词

COVID-19 ; Limonoids ; Triterpenoids ; Molecular docking ; Dynamics simulation

期刊名称

Journal of Traditional and Complementary Medicine

卷期/出版年月

12卷1期(2022 / 01 / 01)

页次

44 - 54

内容语文

英文

中文摘要

Background and aim: The ongoing global pandemic due to SARS-CoV-2 caused a medical emergency. Since December 2019, the COVID-19 disease is spread across the globe through physical contact and respiratory droplets. Coronavirus caused a severe effect on the human immune system where some of the non-structural proteins (nsp) are involved in virus-mediated immune response and pathogenesis. To suppress the viral RNA replication mechanism and immune-mediated responses, we aimed to identify limonoids and triterpenoids as antagonists by targeting helicases (nsp13), exonuclease (nsp14), and endoribonuclease (nsp15) of SARS-CoV-2 as therapeutic proteins. Experimental procedure: In silico molecular docking and drug-likeness of a library of 369 phytochemicals from limonoids and triterpenoids were performed to screen the potential hits that binds effectively at the active site of the proteins target. In addition, the molecular dynamics simulations of the proteins and their complexes with the potential hits were performed for 100 ns by using GROMACS. Results and conclusion: The potential compounds 26-deoxyactein and 25-O-anhydrocimigenol 3-O-beta-D-xylopyranoside posing strong interactions with a minimum binding energy of -10.1 and -9.5 kcal/mol, respectively and sustained close contact with nsp13 for 100 ns. The nsp14 replication fork activity was hindered by the tomentosolic acid, timosaponin A-I, and shizukaol A with the binding affinity score of -9.2, -9.2, and -9.0 kcal/mol, respectively. The nsp15 endoribonuclease catalytic residues were inhibited potentially by limonin, 25-O-anhydrocimigenol 3-O-alpha-L-arabinopyranoside, and asperagenin posing strong binding affinity scores of -9.0, -8.8, and -8.7 kcal/mol, respectively. Computationally predicted potential phytochemicals for SARS-CoV-2 are known to possess various medicinal properties.

主题分类 醫藥衛生 > 中醫藥學
参考文献
  1. Suraphan, P,Ho, C-T,Sheen, L-Y(2020).Dietary therapy and herbal medicine for COVID19 prevention: a review and perspective.J Tradit Complement Med,10,420-427.
    連結:
  2. Vardhan, S,Sahoo, S(2021).Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV2 virus into human host cells.J Tradit Complement Med.
    連結:
  3. Vidoni, C,Fuzimoto, A,Ferraresi, A,Isidoro, C(2021).Targeting autophagy with natural products to prevent SARS-CoV-2 infection.J Tradit Complement Med
    連結:
  4. (2016).Screening and identification of DPP-4 inhibitors from Xiaokean formula by a fluorescent probe.China J Chin Mater Med
  5. (2003).Effect of limonin and nomilin on HIV-1 replication on infected human mononuclear cells.Planta Med,69(10),910-913.
  6. WHO Coronavirus (COVID-19) Dashboard. Covid19.who.int. https://covid19.who.int/; 2021. Accessed July 7, 2021.
  7. Abhilash, K.(2021).Second wave of COVID-19: unrelenting rampage of the SARS CoV-2 variants.Curr Med Issues,19(3),129.
  8. Adedeji, A,Singh, K,Kassim, A(2014).Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses.Antimicrob Agents Chemother,58(8),4894-4898.
  9. Balestrieri, E,Pizzimenti, F,Ferlazzo, A(2011).Antiviral activity of seed extract from Citrus bergamia towards human retroviruses.Bioorg Med Chem,19(6),2084-2089.
  10. Beeraka, N,Sadhu, S,Madhunapantula, S(2020).Strategies for targeting SARS CoV2: small molecule inhibitors-the current status.Front Immunol,11,552925.
  11. Bhardwaj, K,Guarino, L,Kao, C(2004).The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor.J Virol,78(22),12218-12224.
  12. Bhardwaj, K,Palaninathan, S,Alcantara, J(2008).Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15.J Biol Chem,283(6),3655-3664.
  13. Byrd, A(2012).Superfamily 2 helicases.Front Biosci,17(7),2070.
  14. Cicek, S,Khom, S,Taferner, B,Hering, S,Stuppner, H(2010).Bioactivity-guided isolation of GABAAReceptor modulating constituents from the rhizomes of Actaea racemosa.J Nat Prod,73(12),2024-2028.
  15. Cinatl, J,Morgenstern, B,Bauer, G,Chandra, P,Rabenau, H,Doerr, H(2003).Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus.Lancet,361(9374),2045-2046.
  16. Daina, A,Michielin, O,Zoete, V(2017).SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci Rep,7(1)
  17. Eroshenko, N,Gill, T,Keaveney, M,Church, G,Trevejo, J,Rajaniemi, H(2020).Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures.Nat Biotechnol,38(7),789-791.
  18. Eswar, N,Webb, B,Marti-Renom, M(2006).Comparative protein structure modeling using modeller.Curr Protoc Bioinformatics,15(1)
  19. Fakhri, S,Piri, S,Majnooni, M,Farzaei, M,Echeverría, J(2021).Targeting neurological manifestations of coronaviruses by candidate phytochemicals: a mechanistic approach.Front Pharmacol,11
  20. Fan,Zhang,Luo(2019).Limonin: a review of its pharmacology, toxicity, and pharmacokinetics.Molecules,24(20),3679.
  21. Fang, P,Cao, Y,Yan, H(2011).Lindenane disesquiterpenoids with anti-HIV-1 activity from Chloranthus japonicus.J Nat Prod,74(6),1408-1413.
  22. Frazier, M,Dillard, L,Krahn, J(2021).,未出版
  23. Frick, D,Lam, A(2006).Understanding helicase as a means of virus control.Curr Pharmaceut Des.,12(11),1315-1338.
  24. Fuzimoto, A,Isidoro, C(2020).The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - additional weapons in the fight against the COVID-19 pandemic?.J Tradit Complement Med,10(4),405-419.
  25. Guo, G,Gao, M,Gao, X(2021).SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response.Signal Transduct Target Ther,6(1)
  26. Hess, B,Kutzner, C,van der Spoel, D,Lindahl, E(2008).GROMACS 4:algorithms for highly efficient ,load -Balanced,and scalable molecular simulation.J. Chem Theory Comput.,4(3),435-447.
  27. Hsu, C,Yen, G(2014).Ganoderic acid and lucidenic acid (triterpenoid).Enzymes,33-56.
  28. Huey, R,Morris, G,Olson, A,Goodsell, D(2007).A semiempirical free energy force field with charge-based desolvation.J Comput Chem,28(6),1145-1152.
  29. Jang, K,Jeong, S,Kang, D,Sp, N,Yang, Y,Kim, D(2020).A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicases nsP13 in the unwinding of duplex RNA.Sci Rep,10(1)
  30. Jankowsky, E,Fairman, M(2007).RNA helicase - one fold for many functions.Curr Opin Struct Biol,17(3),316-324.
  31. Jia, Z,Yan, L,Ren, Z(2019).Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis.Nucleic Acids Res.,47(12),6538-6550.
  32. Jockusch, S,Tao, C,Li, X(2020).Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir.Sci Rep,10(1)
  33. Jöhrer, Stuppner,Çiçek, Greil(2020).Structure-guided identification of black cohosh (actaea racemosa) triterpenoids with in vitro activity against multiple myeloma.Molecules,25(4),766.
  34. Khor, B,Tye, G,Lim, T,Noordin, R,Choong, Y(2014).The structure and dynamics of BmR1 protein from Brugia malayi: in silico approaches.Int J Mol Sci.,15(6),11082-11099.
  35. Kim, Y,Jedrzejczak, R,Maltseva, N(2020).Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV -2.Protein Sci.,29(7),1596-1605.
  36. Kim, Y,Wower, J,Maltseva, N(2021).Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2.Commun Biol,4(1),193.
  37. Korinek, M,Hsieh, P,Chen, Y(2021).Randialic acid B and tomentosolic acid block formyl peptide receptor 1 in human neutrophils and attenuate psoriasis-like inflammation in vivo.Biochem Pharmacol,190,114596.
  38. Kousar, K,Majeed, A,Yasmin, F,Hussain, W,Rasool, N(2020).Phytochemicals from selective plants have promising potential against SARS-CoV-2: investigation and corroboration through molecular docking, MD simulations, and quantum computations.BioMed Res Int,1-15.
  39. Krammer, F(2020).SARS-CoV-2 vaccines in development.Nature,586(7830),516-527.
  40. Kumar, K,Lupoli, T(2020).Exploiting existing molecular scaffolds for long-term COVID treatment.ACS Med Chem Lett,11(7),1357-1360.
  41. Kumar, S,Kashyap, P,Chowdhury, S,Kumar, S,Panwar, A,Kumar, A(2021).Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication.Phytomedicine,85,153317.
  42. Mariano, G,Farthing, R,Lale-Farjat, S,Bergeron, J(2020).Structural characterization of SARS-CoV-2: where we are, and where we need to Be.Front Mol Biosci,7
  43. Mehany, T,Khalifa, I,Barakat, H,Althwab, S,Alharbi, Y,El-Sohaimy, S(2021).Polyphenols as promising biologically active substances for preventing SARS-CoV-2: a review with research evidence and underlying mechanisms.Food Biosci,40,100891.
  44. Morris, G,Huey, R,Lindstrom, W(2009).AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility.J Comput Chem,30(16),2785-2791.
  45. Narayanan, N,Nair, D(2021).Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs.Int J Biol Macromol,168,272-278.
  46. Ogando, N,Zevenhoven-Dobbe, J,van der Meer, Y,Bredenbeek, P,Posthuma, C,Snijder, E(2020).The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2.J Virol,94(23)
  47. Pal, M,Berhanu, G,Desalegn, C,Kandi, V(2020).Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update.Cureus,12(3),e7423.
  48. Pillon, M,Frazier, M,Dillard, L(2021).Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics.Nat Commun,12(1)
  49. Robson, F,Khan, K,Le, T(2020).Coronavirus RNA proofreading: molecular basis and therapeutic targeting.Mol Cell,79(5),710-727.
  50. Romano, M,Ruggiero, A,Squeglia, F,Maga, G,Berisio, R(2020).A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping.Cells,9(5),1267.
  51. Sahoo, A,Dash, U,Kanhar, S,Mahapatra, A(2017).In vitro biological assessment of Homalium zeylanicum and isolation of lucidenic acid A triterpenoid.Toxicol Rep,4,274-281.
  52. Saramago, M,Barria, C,Costa, V(2021).New targets for drug design: importance of nsp14/nsp10 complex formation for the 3’-5’ exoribonucleolytic activity on SARS-CoV-2.FEBS J
  53. Selvaraj, C,Dinesh, D,Panwar, U,Abhirami, R,Boura, E,Singh, S(2020).Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 GuanineN7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.J Biomol Struct Dyn,1-12.
  54. Shu, T,Huang, M,Wu, D(2020).SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicases activities that can Be inhibited by bismuth salts.Virol Sin,35(3),321-329.
  55. Singh, S,Bajpai, U,Michael, Lynn, A(2014).Structure based virtual screening to identify inhibitors against MurE Enzyme of Mycobacterium tuberculosis using AutoDock Vina.Bioinformation,10(11),697-702.
  56. Squeglia, F,Romano, M,Ruggiero, A,Maga, G,Berisio, R(2020).Host DDX helicase as possible SARS-CoV-2 proviral factors: a structural overview of their hijacking through multiple viral proteins.Front Chem,8
  57. Stevaert, A,Krasniqi, B,Van Loy, B(2021).Betulonic acid derivatives interfering with human coronavirus 229E replication via the nsp15 endoribonuclease.J Med Chem,64(9),5632-5644.
  58. Tahir, M(2021).Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target.J Med Virol,93(7),4258-4264.
  59. Talmon, M,Bosso, L,Quaregna, M(2020).Anti-inflammatory activity of absinthin and derivatives in human bronchoepithelial cells.J Nat Prod.,83(6),1740-1750.
  60. Tang, P,Li, Q,Liao, S(2021).Shizukaol A exerts anti-inflammatory effect by regulating HMGB1/Nrf2/HO-1 pathway.Phytomedicine,82,153472.
  61. Tian, Z,Zhou, L,Huang, F(2006).Anti-cancer activity and mechanisms of 25-anhydrocimigenol-3-O-D-xylopyranoside isolated from Souliea vaginata on hepatomas.Anti Cancer Drugs,17(5),545-551.
  62. V’kovski, P,Kratzel, A,Steiner, S,Stalder, H,Thiel, V(2020).Coronavirus biology and replication: implications for SARS-CoV-2.Nat Rev Microbiol,19(3),155-170.
  63. van de Sand, L,Bormann, M,Alt, M(2021).Glycyrrhizin effectively inhibits SARSCoV-2 replication by inhibiting the viral main protease.Viruses,13(4),609.
  64. Vardhan, S,Sahoo, S(2020).In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19.Comput Biol Med,124,103936.
  65. Wen, C,Kuo, Y,Jan, J(2007).Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus.J Med Chem,50(17),4087-4095.
  66. Weng, C,Chau, C,Chen, K,Chen, D,Yen, G(2007).The anti-invasive effect of lucidenic acids isolated from a newGanoderma lucidum strain.Mol Nutr Food Res.,51(12),1472-1477.
  67. White, M,Lin, W,Cheng, X(2020).Discovery of COVID-19 inhibitors targeting the SARSCoV-2 Nsp13 helicases.J Phys Chem Lett,11(21),9144-9151.
  68. Wu, D,Yao, Q,Chen, Y,Hu, X,Qing, C,Qiu, M(2016).The in vitro and in vivo antitumor activities of tetracyclic triterpenoids compounds actein and 26-deoxyactein isolated from rhizome of cimicifuga foetida L.Molecules,21(8),1001.
  69. Zhao, Z,Xiao, Y,Xu, L(2021).Glycyrrhizic acid nanoparticles as antiviral and antiinflammatory agents for COVID-19 treatment.ACS Appl Mater Interfaces,13(18),20995-21006.
被引用次数
  1. Lee-Yan Sheen,Ciro Isidoro,Ashley Chiung-Fang Chang(2022).Natural products as a source of novel drugs for treating SARS-CoV2 infection.Journal of Traditional and Complementary Medicine,12(1),1-5.
  2. Suban K. Sahoo,Seshu Vardhan(2023).Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus.Journal of Traditional and Complementary Medicine,13(5),465-478.