题名

Potential natural products that target the SARS-CoV-2 spike protein identified by structure-based virtual screening, isothermal titration calorimetry and lentivirus particles pseudotyped (Vpp) infection assay

DOI

10.1016/j.jtcme.2021.09.002

作者

Guan-Yu Chen;Yi-Cheng Pan;Tung-Ying Wu;Tsung-You Yao;Wei-Jan Wang;Wan-Jou Shen;Azaj Ahmed;Shu-Ting Chan;Chih-Hsin Tang;Wei-Chien Huang;Mien-Chie Hung;Juan-Cheng Yang;Yang-Chang Wu

关键词

SARS-CoV-2 ; Spike protein ; Virtual screening ; Isothermal titration calorimetry ; Lentivirus particles pseudotyped (Vpp) ; infection assay

期刊名称

Journal of Traditional and Complementary Medicine

卷期/出版年月

12卷1期(2022 / 01 / 01)

页次

73 - 89

内容语文

英文

中文摘要

Background and aim: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. Methods: The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. Results and conclusion: We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K_d) = 0.468 μM, 1.712 μM, 6.650 μM, 2.86 μM, 3.761 μM and 4.27 μM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC_(50) > 100 μM; dioscin and celastrol showed IC_(50) = 1.5625 μM and 0.9866 μM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. Section: 1: Natural Products. Taxonomy (classification by evise): SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.

主题分类 醫藥衛生 > 中醫藥學
参考文献
  1. Abhishek, RU,Thippeswamy, S,Manjunath, K,Mohana, DC(2015).Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides.J Appl Microbiol,119(6),1624-1636.
  2. Backer, JA,Klinkenberg, D,Wallinga, J(2020).Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020.Euro Surveill,25(5),10-15.
  3. Beutler, JA(2019).Natural products as a foundation for drug discovery.Curr Protoc Pharmacol,86(1),e67.
  4. Calixto, JB,Campos, MM,Otuki, MF,Santos, AR(2004).Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules.Planta Med,70(2),93-103.
  5. Cheng, FJ,Huynh, TK,Yang, CS(2021).Hesperidin is a potential inhibitor against SARS-CoV-2 infection.Nutrients,13(8)
  6. Cho, J,Choi, H,Lee, J,Kim, MS,Sohn, HY,Lee, DG(2013).The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica.Biochim Biophys Acta,1828(3),1153-1158.
  7. Corman, VM,Lienau, J,Witzenrath, M(2019).Coronaviruses as the cause of respiratory infections.Internist,60(11),1136-1145.
  8. Crawford, KHD,Eguia, R,Dingens, AS(2020).Protocol and reagents for pseudo-typing lentiviral particles with SARS-CoV-2 spike protein for neutralization assays.Viruses,12(5)
  9. Dallakyan, S,Olson, AJ(2015).Small-molecule Library Screening by Docking with PyRx.Methods Mol Biol,243-250.
  10. DeLano, W,DeLano Scientific, L(2002).DeLano W, DeLano Scientific L. PyMOL Version 0.99. San Carlos, CA: DeLano Scientific; 2002..
  11. Demarse, NA,Quinn, CF,Eggett, DL,Russell, DJ,Hansen, LD(2011).Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels.Anal Biochem,417(2),247-255.
  12. Du, LY,He, YX,Zhou, YS,Liu, SW,Zheng, BJ,Jiang, SB(2009).The spike protein of SARS-CoV - a target for vaccine and therapeutic development.Nat Rev Microbiol,7(3),226-236.
  13. Hamming, I,Timens, W,Bulthuis, ML,Lely, AT,Navis, G,van Goor, H(2004).Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J Pathol,203(2),631-637.
  14. Hoffmann, M,Kleine-Weber, H,Schroeder, S(2020).SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell,181(2),271e+.
  15. Kambhampati, S,Li, J,Evans, BS,Allen, DK(2019).Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry.Plant Methods,15,46.
  16. Krainer, G,Broecker, J,Vargas, C,Fanghanel, J,Keller, S(2012).Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.Anal Chem,84(24),10715-10722.
  17. Lan, J,Ge, J,Yu, J(2019).,未出版
  18. Li, FJ,Liu, Y,Yuan, Y,Yang, B,Liu, ZM,Huang, LQ(2017).Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of Rhodiola crenulata using molecular docking and isothermal titration calorimetry methods.Int J Biol Macromol,104(Pt A),527-532.
  19. Li, HB,Chen, F(2009).Separation and purification of epimedin A, B, C, and icariin from the medicinal herb Epimedium brevicornum maxim by dual-mode HSCCC.J Chromatogr Sci.,47(5),337-340.
  20. Liu, C,Wang, Y,Wu, C(2013).Dioscin's antiviral effect in vitro.Virus Res,172(1-2),9-14.
  21. Lu, R,Zhao, X,Li, J(2020).Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.Lancet,395(10224),565-574.
  22. Luk, HKH,Li, X,Fung, J,Lau, SKP,Woo, PCY(2019).Molecular epidemiology, evolution and phylogeny of SARS coronavirus.Infect Genet Evol,71,21-30.
  23. Madjid, M,Safavi-Naeini, P,Solomon, SD,Vardeny, O.(2020).Potential effects of coronaviruses on the cardiovascular system: a review.JAMA Cardiol
  24. Nunes, NM,Coelho, YL,Castro, JS(2020).Naringenin-lactoferrin binding: impact on naringenin bitterness and thermodynamic characterization of the complex.Food Chem,331,127337.
  25. O'Boyle, N,Banck, M,James, C,Morley, C,Vandermeersch, T,Hutchison, G(2011).Open babel: an open chemical toolbox.J Cheminf,3(1),33.
  26. Olson, BJ,Markwell, J.(2007).Assays for determination of protein concentration.Curr Protoc Protein Sci.,48(1),3.4. 1-43.4. 29.
  27. Organization WH(2020).Organization WH. WHO Director-General's Opening Remarks at the Media Briefing on COVID-19-11 March 2020. Geneva, Switzerland. 2020..
  28. Paidi, RK,Jana, M,Mishra, RK,Dutta, D,Raha, S,Pahan, K(2021).ACE-2-interacting domain of SARS-CoV-2 (AIDS) peptide suppresses inflammation to reduce fever and protect lungs and heart in mice: implications for COVID-19 therapy.J Neuroimmune Pharmacol,16(1),59-70.
  29. Pan, Y,Ke, Z,Ye, H(2019).Saikosaponin C exerts anti-HBV effects by attenuating HNF1alpha and HNF4alpha expression to suppress HBV pgRNA synthesis.Inflamm Res,68(12),1025-1034.
  30. Panda, PK,Arul, MN,Patel, P(2020).Structure-based drug designing and immunoinformatics approach for SARS-CoV-2.Sci Adv.,6(28),eabb8097.
  31. Papageorgiou, AC,Mohsin, I(2020).The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: structural insights into its complexes with ACE2 and antibodies.Cells,9(11),2343.
  32. Paraskevis, D,Kostaki, EG,Magiorkinis, G,Panayiotakopoulos, G,Sourvinos, G,Tsiodras, S(2020).Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event.Infect Genet Evol,79,104212.
  33. Pierce, MM,Raman, CS,Nall, BT(1999).Isothermal titration calorimetry of proteinprotein interactions.Methods,19(2),213-221.
  34. Rabaan, AA,Al-Ahmed, SH,SARS-CoV(2020).SARS-CoV-2, SARS-CoV, and MERSCOV: a comparative overview.Inf Med,28,174-184.
  35. Schluederberg, A,Williams, CA,Black, FL(1972).Inhibition of measles virus replication and RNA synthesis by actinomycin D.Biochem Biophys Res Commun,48(3),657-661.
  36. Shagufta Ahmad, I.(2021).The race to treat COVID-19: potential therapeutic agents for the prevention and treatment of SARS-CoV-2.Eur J Med Chem,213,113157.
  37. Song, ZQ,Xu, YF,Bao, LL(2019).From SARS to MERS, thrusting coronaviruses into the spotlight.Viruses-Basel,11(1),59.
  38. Strømgaard, K,Krogsgaard-Larsen, P,Madsen, U(2017).Textbook of Drug Design and Discovery.CRC press.
  39. Tai, WB,He, L,Zhang, XJ(2020).Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine.Cell Mol Immunol,17(6)
  40. Tikellis, C,Thomas, MC(2012).Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the Renin angiotensin system in Health and disease.Int J Pept,2012,256294.
  41. Trott, O,Olson, AJ(2010).AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J Comput Chem,31(2),455-461.
  42. Velázquez-Campoy, A,Ohtaka, H,Nezami, A,Muzammil, S,Freire, E(2004).Isothermal titration calorimetry.Curr. Protoc. Cell Biol,23(1),17.18.11-17.18.24.
  43. Visualizer DS.(2019).Visualizer DS. San Diego: Dassault Systèmes BIOVIA; 2019..
  44. Wang, SC,Chen, Y,Wang, YC(2020).Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease.Am J Cancer Res,10(12),4538-4546.
  45. Waterhouse, A,Bertoni, M,Bienert, S(2018).SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res,46(W1),W296-W303.
  46. Wrapp, D,Wang, N,Corbett, KS(2020).Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science.,367(6483),1260-1263.
  47. Xia, S,Liu, MQ,Wang, C(2020).Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion.Cell Res.,30(4),343-355.
  48. Yu, S,Zhu, Y,Xu, J(2021).Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.Phytomedicine,85,153364.
  49. Yuan, BC,Yang, R,Ma, YS,Zhou, S,Zhang, XD,Liu, Y(2017).A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications.Pharmaceut Biol,55(1),620-635.
  50. Yuan, M,Wu, NC,Zhu, X(2020).A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV.Science
  51. Zaki, AM,van Boheemen, S,Bestebroer, TM,Osterhaus, AD,Fouchier, RA(2012).Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N Engl J Med.,367(19),1814-1820.
  52. Zhang, M,Liu, J,Liu, P(2011).Study on chemical constituents of the branches and leaves of Cunninghamia lanceolata.J Shanghai Jiaotong Univ Agric Sci.,29(5),67-71.
  53. Ziebuhr, J,Siddell, SG(1999).Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab.J Virol,73(1),177-185.
被引用次数
  1. Lee-Yan Sheen,Ciro Isidoro,Ashley Chiung-Fang Chang(2022).Natural products as a source of novel drugs for treating SARS-CoV2 infection.Journal of Traditional and Complementary Medicine,12(1),1-5.