题名

Research Advance of Mechanical Properties Test of Solid Propellant Compression

DOI

10.6919/ICJE.202205_8(5).0010

作者

Tingjing Geng;Hongfu Qiang;Zhejun Wang;Xueren Wang

关键词

Solid Propellant ; Compression ; Mechanical Properties ; Research Progress

期刊名称

International Core Journal of Engineering

卷期/出版年月

8卷5期(2022 / 05 / 01)

页次

80 - 88

内容语文

英文

中文摘要

This paper summarizes the current research status of test articles and corresponding test loading devices in ranges of quasi-static and dynamic strain rate in mechanical properties test of solid propellant compression. The future development trend of mechanical properties test of solid propellant compression is prospected, and it is considered that the experimental study of mechanical properties of multiaxial compression, especially multiaxis mechanical properties under dynamic loading conditions, is a future research focus, which is helpful to more comprehensively and deeply understand the mechanical properties of solid propellant under complex stress.

主题分类 工程學 > 工程學綜合
参考文献
  1. Yildinm H C, Oezupek S. Structural assessment of a solid propellant rocket motor: Effects of aging and damage[J]. Aerospace science & Technology, 2011,15(8): 635-641.
    連結:
  2. Traissac Y, Ninous J, Neviere R, et al. Mechanical behavior of a solid composite propellant during motor ignition[J]. Rubber Chemistry and Technology, 1995,68(1): 146-157.
    連結:
  3. Park C, Huh H, Park J. Rate-dependent hardening model for polymer-bonded explosives with an HTPB polymer matrix considering a wide range of strain rates[J]. Journal of Composite Materials, 2015,49(4): 425-438.
    連結:
  4. Yang L, Wang N, Xie K, et al. Influence of strain rate on the compressive yield stress of CMDB propellant at low, intermediate and high strain rates[J]. Polymer Testing, 2016,51: 49-57.
    連結:
  5. Trautmann A, Siviour C R, Walley S M, et al. Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 2004,31(5).
    連結:
  6. Jones J W, Knauss W G. Propellant Failure Criteria[R].AIAA, 1965.
    連結:
  7. Field J E, Walley T M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International journal of impact engineering, 2004, 30(7): 725-775.
    連結:
  8. Laura De Lorenzis, Antonio Nanni. Bond between Near-Surface Mounted Fiber-Reinforced Polymer Rods and Concrete in Structural Strengthening[J]. Structural Journal,2002,99(2).
    連結:
  9. Williamson D, Siviour C, Proud W, et al. Temperature–time response of a polymer bonded explosive in compression (EDC37)[J]. Journal of Physics D: Applied Physics, 2008,41(8): 85404.
    連結:
  10. Gray III G, Blumenthal W R. Split-Hopkinson pressure bar testing of soft materials[J]. ASM handbook, 2000,8: 488-496.
    連結:
  11. Wang Z, Qiang H, Wang T, et al. A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time-Dependent Materials, 2018,22(3): 291-314.
    連結:
  12. Yang L, Xie K, Pei J, et al. Compressive mechanical properties of HTPB propellant at low, intermediate, and high strain rates[J]. Journal of Applied Polymer Science, 2016,133(23).
    連結:
  13. Damith Mohotti, Muneeb Ali, Tuan Ngo, et al. Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading[J]. Materials and Design,2014,53.
    連結:
  14. S.N. Raman, T. Ngo, J. Lu, P. Mendis. Experimental investigation on the tensile behavior of polyurea at high strain rates[J]. Materials and Design,2013,50.
    連結:
  15. Song B, Chen W W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007,49(12).
    連結:
  16. Wong E H, Selvanayagam C S, Seah S K W. Stress–strain characteristics of tin-based solder alloys at medium strain rate[J]. Materials Letters, 2008,62(17).
    連結:
  17. Kossa A. A new biaxial compression fixture for polymeric foams[J]. Polymer Testing, 2015,45: 47-51.
    連結:
  18. Bailly P, Delvare F, Vial J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[J]. International Journal of Impact Engineering, 2011,38(2-3): 73-84.
    連結:
  19. Chen W, Zhang B, Forrestal M. A split Hopkinson bar technique for low-impedance materials[J]. Experimental MATHEMATICS, 1999,39(2): 81-85.
    連結:
  20. Davies E D H, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics & Physics of Solids, 1963,11(3): 155-179.
    連結:
  21. Lim J, Hong J, Chen W W, et al. Mechanical response of pig skin under dynamic tensile loading[J]. International Journal of Impact Engineering, 2010,38(2).
    連結:
  22. Sun C, Xu J, Chen X, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant[J]. Mechanics of Materials, 2015,89(oct.): 35-46.
    連結:
  23. Zhang J, Zheng J, Chen X, et al. A thermovisco-hyperelastic constitutive model of NEPE propellant over a large range of strain rates[J]. Journal of Engineering Materials & Technology, 2014,136(3): 31002.
    連結:
  24. Song B, Ge Y, Chen W W, et al. Radial inertia effects in Kolsky bar testing of extra-soft specimens[J]. Experimental Mechanics, 2007,47(5).
    連結:
  25. Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society B, 1949,62(11): 676-700.
    連結:
  26. J. E. Balzer, C. R. Siviour, S. M. Walley, et al. Behaviour of Ammonium Perchlorate-Based Propellants and a Polymer-Bonded Explosive under Impact Loading[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2004,460(2043).
    連結:
  27. Wang Liwen, Pang Baojun, Zhu Yao. Dynamic mechanical properties of solid rocket engine propellant: Solid Rocket Propulsion Annual Meeting, Chinese Society of Astronautics [C], 2007.
  28. Lin Shizhong, Chen Yalun. Compression test of composite solid propellant: Symposium on Solid Rocket Propulsion, Chinese Society of Astronautics [C], 1986.
  29. Method for determining the tensile properties of solid rocket propellants. [M]. CBIA Publish, 1957: 100.
  30. Qiang Hongfu. Numerical simulation and experimental study on structural integrity of solid rocket motor grain [D]. Mechanics, Xi'an Jiaotong University, 1999.
  31. Zhang Ya. HTPB composite Experimental and theoretical study of solid propellant failure criterion [D]. Second Artillery Engineering College, 2010.
  32. Zhang Junfa, Ju Yutao, Sun Chaoxiang, et al. Study on dynamic mechanical properties of NEPE propellant [J]. Solid Rocket Technology, 2013, 36 (03): 358-362.
  33. Wu Huimin, Lu Fangyun, Lu Li, et al. Observation of mesoscopic failure characteristics of three energetic materials under compressive loading [J]. Journal of High Pressure Physics, 2005 (03): 213-218.
  34. Wu Huimin, Lu Fangyun, Lu Li, et al. Experimental study on strain rate effect of mechanical behavior of three energetic materials [J]. Energetic Materials, 2004 (04): 227-230.
  35. Ren P, Hou X, He G R. Comparative research of tensile and compressive modulus of composite solid propellant for solid rocket motor[J]. Journal of Astronautics, 2010,31(10): 2354-2359.
  36. Hu Shaoqing, Ju Yutao, Meng Honglei, et al. Dual lead-2 experimental study on compression mechanical properties of solid propellant [J]. Jiangsu Airlines, 2010 (s1): 121-123.
  37. Lai Jianwei, Chang Xinlong, Long Bing, et al. Effect of low temperature and strain rate on compression mechanical properties of HTPB propellant [J]. Solid Rocket Technology, 2012, 35 (06): 792-794.
  38. Sun Chaoxiang, Yu Jutao, Zheng Jian, et al. Experimental study on compressive properties of modified double-base propellant at high and low strain rates [J]. Journal of Military Engineering, 2013, 34 (6): 698-703.
  39. Xia Zhichao. Mechanical properties of composite propellant under compressive loading with strain rate [D]. Beijing Institute of Technology, 2015.
  40. Zhou Haixia, Li Shipeng, Xie Kan, et al. Study on viscoelastic constitutive model of HTPB propellant under broad strain rate [J]. Solid Rocket Technology, 2017, 40 (3): 325-329.
  41. GJB 770B-2005. Test method for explosives [S]. National Defense Science and Technology Commission.
  42. Wang Hongli. Study on damaged viscoelastic-plastic constitutive model of modified double base propellant and its application [D]. Nanjing University of Science and Technology, 2019.
  43. Wang Zhejun, Qianghongfu, Wang Guang, et al. Study on compression mechanical properties and constitutive model of HTPB propellant at medium strain rate [J]. Advancement Technology, 2016, 37 (4): 776-782.
  44. Li Meng, Zhao Fengqi, Pei Jiangfeng, Xu Siyu, Luoyang, Puqing, Hao Haixia, Yao Ergang, Jiang Hanyu. A method for measuring the stress and strain of composite propellant at medium strain rate [P]. Shaanxi: CN104237018A, 2014-12-24.
  45. Yang Long. Strain rate correlation and constitutive model of mechanical behavior of CMDB and HTPB propellants [D]. Beijing Institute of Technology, 2016.
  46. Wang Zhijun. Experimental and theoretical study on mechanical behavior of HTPB propellant under dynamic loading at low temperature [D]. Rocket Force University of Engineering, 2016.
  47. Hu Jun, Wu Xutao, Hu Shisheng. Study on dynamic mechanical properties of EPS concrete [J]. Vibration and Shock, 2011, 30 (07): 205-209.
  48. Lu Fangyun, Lin Yuliang, Wang Xiaoyan, et al. High strain rate response of energetic materials [J]. Journal of Explosives, 2006 (01): 1-4.
  49. Chang Xinlong, Lai Jianwei, Zhang Xiaojun, et al. Study on viscoelastic constitutive model of HTPB propellant with high strain rate [J]. Advancement Technology, 2014, 35 (01): 123-127.
  50. Zhang Junfa. Study on thermo-viscoelastic constitutive model of NEPE propellant under broad strain rate [D]. Nanjing University of Science and Technology, 2014.
  51. Li Yulong, Jin Kanghua, Liu Chenlin, Sao Tao. Biaxial biaxial compression loading device and its method [P]. Shaanxi Province: CN109297811A, 2019-02-01.