题名

Application of Co-evolutionary Genetic Algorithm for Structural Optimization

并列篇名

協同進化遺傳算法在結構優化中的應用

作者

顏弘錡(Hong-Chi Yan);簡春娟(Chuen-Jiuan Jane)

关键词

Coevolutionary genetic algorithms ; Genetic algorithms ; Structural optimization ; Penalty techniques ; 協同進化遺傳算法 ; 結構優化 ; 懲罰函數 ; ANSYS FEA

期刊名称

計量管理期刊

卷期/出版年月

18卷1期(2021 / 05 / 01)

页次

27 - 49

内容语文

英文

中文摘要

The paper studies the application of the co-evolutionary genetic algorithms in the structural optimization design. The optimization issues with constraints can be converted to those without constraints with the penalty techniques, making the general genetic algorithms applicable to find the optimal solution for the design problems. Firstly, three penalty parameters are defined to control the values of the penalty items. The first penalty parameter is related to the distance of the feasible region threshold, the second to the degree of the infringement against constraints, and the third to the number of infringement against constraints. Then two groups of parent populations are defined: the first group is the parent population of the penalty parameter and the other of the design parameters. By the co-evolutionary genetic algorithms, both groups of parent populations evolve simultaneously to get the optimal penalty parameters fitting for the design problem. Finally, this paper develops a structural optimization program combining the co-evolutionary procedure with commercial ANSYS FEA software. With this program, some testing examples and practical structural design issues are solved. The analysis results show that the method in this paper can get very satisfactory convergence for general structural optimization issues.

英文摘要

本文研究了協同進化遺傳算法在結構優化設計中的應用。可以使用懲罰函數將有約束的最佳化問題轉換為無約束的最佳化問題,從而使通用遺傳算法可用於找到設計問題的最佳解決方案。首先,定義了三個懲罰參數以控制懲罰項的值。第一個懲罰參數與可行區域閾值的距離有關,第二個與違反約束的程度有關,第三個與違反約束的數量有關。然後定義了兩組母體:第一組是懲罰參數的母體,另一組是設計參數。經由共同進化遺傳算法,兩組親代群體同時進化,獲得了適合設計問題的最佳罰分參數。最後,本文開發了一種將協同進化過程與商業ANSYS FEA程式相結合的結構優化程序。經由該程式,可以解決一些測試示例和實際的結構設計問題。分析結果顯示本文所提出的方法對於一般的結構最佳化問題具有很好的收斂性。

主题分类 工程學 > 工程學綜合
社會科學 > 管理學
参考文献
  1. Chang, X.(2016).Semantic pooling for complex event analysis in untrimmed videos.IEEE transactions on pattern analysis and machine intelligence,39(8),1617-1632.
  2. Chehouri, A.(2016).A constraint-handling technique for genetic algorithms using a violation factor.Journal of Computer Sciences,12(7),350-362.
  3. Coit, D. W.,Smith, A. E.(1996).Reliability optimization of series-parallel systems using genetic algorithm.IEEE Transactions on Reliability,45(2),254-260.
  4. Ede, A. N.(2018).Structural analysis of a genetic algorithm optimized steel truss structure according to BS 5950.International Journal of Civil Engineering and Technology,9(8),358-364.
  5. Filomeno Coelho, R.(2013).Co-evolutionary optimization for multi-objective design under uncertainty.Journal of mechanical design,135(2),021006.
  6. Fisher, M. L.(2004).The Lagrangian relaxation method for solving integer programming problems.Management Science,50(2),1861-1871.
  7. Hajela, P.(2002).Soft computing in multidisciplinary aerospace design-new directions for research.Progress in Aerospace Sciences,38(1),1-21.
  8. Hock, W.,Schittkowski, K.(1983).A comparative performance evaluation of 27 nonlinear programming codes.Computing,30(4),335-358.
  9. Holland, J. H.(1975).Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence.USA:University of Michigan Press.
  10. Joines, J. A.,Houck, C. R.(1994).On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs.Proceedings of the 1st IEEE Conference on Evolutionary Computation
  11. Karim, M. R.,Mouhoub, M.(2014).Coevolutionary genetic algorithm for variable ordering in CSPs.IEEE Congress on Evolutionary Computation
  12. Kulkarni, O.(2018).Constrained cohort intelligence using static and dynamic penalty function approach for mechanical components design.International Journal of Parallel, Emergent and Distributed Systems,33(6),570-588.
  13. Li, G.(2016).Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization.IEEE Transactions on Vehicular Technology,66(4),3249-3264.
  14. Li, G.(2017).Adaptive quality-of-service-based routing for vehicular Ad Hoc networks with ant colony optimization.IEEE Transactions on Vehicular Technology,66(4),3249-3264.
  15. Li, Z.(2019).Zero-shot event detection via event-adaptive concept relevance mining.Pattern Recognition,88,595-603.
  16. Liu, B.(2007).A memetic co-evolutionary differential evolution algorithm for constrained optimization.Proceedings IEEE Congress on Evolutionary Computation
  17. Michalewicz, Z.,Schienauer, M.(1996).Evolutionary algorithms for constrained parameter optimization problems.Evolutionary Computation,4(1),1-32.
  18. Panda, A.,Pani, S.(2016).A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems.Applied Soft Computing,46,344-360.
  19. Smith, A. E.,Tate, D. M.(1993).Genetic optimization using a penalty function.Proceedings of the 5th International Conference on Genetic Algorithms
  20. Tahk, M. J.,Sun, B. C.(2000).Coevolutionary augmented lagrangian methods for constrained optimization.IEEE Transactions on Evolutionary Computation,4(2),114-124.
  21. Tate, D. M.,Smith, A. E.(1995).A genetic approach to the quadratic assignment problem.Computers And Operations Research,22(1),73-83.
  22. Weicker, K.,Weicher, N.(1999).On the improvement of coevolutionary optimizers by learning variable interdependencies.Proceedings of the Congress on Evolutionary Computation,USA:
  23. Wu, J.(2018).Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives.IEEE Communications Surveys & Tutorials,20(3),2389-2406.
  24. Yeniay, Ö.(2005).Penalty function methods for constrained optimization with genetic algorithms.Mathematical and computational Applications,10(1),45-56.
  25. Zhong, W.(2016).Topology and sizing optimization of discrete structures using a cooperative coevolutionary genetic algorithm with independent ground structures.Engineering Optimization,48(6),911-932.