题名

氣液耦合史特靈熱聲引擎起振溫度之數值計算探討

并列篇名

The Study about Critical Temperature of Thermoacoustic Engine with Liquid Piston

DOI

10.29911/JEHVACE_NEW.202101_(125).0004

作者

王凌煒(Wang Ling-Wei);許書涵(Hsu Shu-Han)

关键词

熱聲引擎 ; 氣液耦合振動 ; 史特靈引擎 ; 起振溫度 ; thermoacoustic engine ; gas-liquid coupling oscillation ; Stirling engine ; critical temperature

期刊名称

冷凍空調&能源科技

卷期/出版年月

125期(2021 / 01 / 10)

页次

39 - 45

内容语文

繁體中文

中文摘要

本論文探討氣液耦合史特靈熱聲引擎,在不同氣液體積比狀況下對引擎起振溫度、自激振盪頻率之影響。熱聲引擎是以熱聲效應為基礎所設計出來的一種新型態的熱機,有著近似於史特靈循環之高效率熱力學循環,並且無可動部件,相較於機械式引擎有構造簡單優勢。純氣柱之史特靈引擎需要高溫及高壓,限制了應用範圍及工作條件,因此本研究藉由加入液柱改變起振頻率及溫度,並研究其影響。主要計算模型為三組再生器單元所構成之聯通管,並由水柱互相連結。本實驗在引擎總體積不變的情況下,改變氣液柱比例,藉由線性熱聲理論計算並模擬引擎起振溫度和頻率之變化。本研究驗證了氣液耦合史特靈引擎可在水的汽化溫度以下運行,相較純氣柱引擎,可大幅降低起振溫度,使熱聲引擎有更大工作溫度範圍。

英文摘要

This report aims to numerically study a thermoacoustic Stirling engine whose spontaneous oscillations are propagating through gas and liquid columns in a loop tube. By considering different lengths of the liquid column, we discussed the influences for the onset conditions of the critical temperature ratio and the oscillation frequency of the thermoacoustic engine. Based upon the framework of the thermoacoustic theory, transfer matrices are used to characterize the whole engine composing of three identical regenerator units connected with U tubes to form a loop. The calculation results indicate that using liquid columns in the thermoacoustic engine dramatically decreases the onset temperature and the oscillation frequency. Also, the numerical results of the temperature difference between the regenerators for starting up the engine are lower than 50 K which is below the vaporization temperature of water in the atmospheric pressure.

主题分类 工程學 > 電機工程
参考文献
  1. Backhaus, S.,Swift, G. W.(1999).A thermoacoustic Stirling heat engine.Nature,399,335.
  2. Biwa, T.(2018)。Thermoacoustic Device。Tokyo:Corona Publishing Co., Ltd.。
  3. Biwa, T.,Hasegawa, D.,Yazaki, T.(2010).Low temperature differential thermoacoustic Stirling engine.Applied physics letters,97,034102.
  4. Ceperley, P. H.(1979).Pistonless Stirling Engine - Travelingwave heat engine.The Journal of the Acoustical Society of America,66,1508-1513.
  5. Guedra, M.,Penelet, G.(2012).On the Use of a Complex Frequency for the Description of Thermoacoustic Engines.Acta Acustica united with Acustica,98,232-241.
  6. Hyodo, H.,Tamura, S.,Biwa, T.(2017).A loopedtube traveling-wave engine with liquid pistons.Journal of Applied Physics,122,114902.
  7. Migliori, A.,Swift, G. W.(1988).Liquid‐sodium thermoacoustic engine.Applied Physics Letters,53,355.
  8. Noda, D.,Ueda, Y.(2013).A thermoacoustic oscillator powered by vaporized water and ethanol.American Journal of Physics,81,124-126.
  9. Swift, G.W.(2017).Thermoacoustics: A unifying perspective for some engines and refrigerators.New York:Springer International Publishing.
  10. Tijani, M. E. H.,Spoelstra, S.(2011).A high performance thermoacoustic engine.Journal of Applied Physics,110,093519.
  11. Tominaga, A.(1998)。Fundamental Thermoacoustic。Tokyo:Uchida Rokakuho。
  12. Tsuda, K.,Ueda, Y.(2017).Critical temperature of traveling- and standing-wave thermoacoustic engines using a wet regenerator.Applied Energy,196,62-67.
  13. West, C. D.(1983).Liquid Piston Stirling Engines.New York:Van Nostrand Reinhold Company.