题名

被動式輻射冷卻應用在「白天」的材料

并列篇名

Passive Radiative Cooling: Materials Applied in "Daytime"

DOI

10.29911/JEHVACE_NEW.202107_(128).0007

作者

呂錫民(Shyi-Min Lu)

关键词

被動式冷卻(Passive cooling) ; 電磁波相互作用(Electromagnetic wave interaction) ; 光子輻射器(Photonic radiator) ; 多重材料(Metamaterial) ; 空調(Air conditioning)

期刊名称

冷凍空調&能源科技

卷期/出版年月

128期(2021 / 07 / 09)

页次

71 - 81

内容语文

繁體中文

中文摘要

本文介紹被動式輻射冷卻的材料、電磁波互動物理學及設計。材料結構是實現白天輻射冷卻的重要參數,三種主要材料結構被提出(即,多層結構,多孔聚合物,無規分佈結構)。隨後,探討用於白天輻射冷卻的多重材料的各種製造工藝和特性。最後,討論白天輻射冷卻的各種挑戰及未來發展。希望本文對此領域的進一步研究和發展有所裨益。

英文摘要

This article introduces passive radiative cooling materials, electromagnetic interaction physics, and design. Materials structure is an important parameter for realizing daytime radiative cooling, and three main material structures are proposed (ie, multilayer structure, porous polymer, random distribution structure). Subsequently, various manufacturing processes and characteristics of multiple materials used for daytime radiative cooling are discussed. Finally, the challenges and development of daytime radiative cooling in the future are discribed, hoping that this article will be helpful for further research and development in this field.

主题分类 工程學 > 電機工程
参考文献
  1. Atiganyanun, S,Zhou, M,Abudayyeh, OK,Han, SM,Han, SE(2017).Control of randomness in microsphere-based photonic crystals assembled by Langmuir-blodgett process.Langmuir,33,13783-13789.
  2. Bao, H,Yan, C,Wang, B,Fang, X,Zhao, CY,Ruan, X(2017).Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling.Sol Energy Mater Sol Cells,168,78-84.
  3. Bartoli, B,Catalanotti, S,Coluzzi, B,Cuomo, V,Silvestrini, V,Troise, G(1977).Nocturnal and diurnal performances of selective radiators.Appl Energy,3,267-286.
  4. Bijarniya, JP,Sarkar, J,Maiti, P(2020).Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential.J Clean Prod,274,123119.
  5. Chen, Z,Zhu, L,Raman, A,Fan, S(2016).Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.Nat Commun,7,1-5.
  6. Gao, M,Han, X,Chen, F,Zhou, W,Liu, P,Shan, Y(2019).Approach to fabricating highperformance cooler with near-ideal emissive spectrum for above-ambient air temperature radiative cooling.Sol Energy Mater Sol Cells,200,110013.
  7. Gentle, AR,Smith, GB(2015).A subambient open roof surface under the mid-summer sun.Adv Sci,2,1500119.
  8. Goldstein, EA,Raman, AP,Fan, S(2017).Sub-ambient non-evaporative fluid cooling with the sky.Nat Energy,2,1-7.
  9. Han, D,Ng, BF,Wan, MP(2020).Preliminary study of passive radiative cooling under Singapore’s tropical climate.Sol Energy Mater Sol Cells,206,110270.
  10. Huang, Z,Ruan, X(2017).Nanoparticle embedded double-layer coating for daytime radiative cooling.Int J Heat Mass Tran,104,890-896.
  11. Jeong, SY,Tso, CY,Zouagui, M,Wong, YM,Chao, CYH(2018).A numerical study of daytime passive radiative coolers for space cooling in buildings.Build Simul,11,1011-1028.
  12. Katramiz, E,Ghaddar, N,Ghali, K(2020).Daytime radiative cooling : to what extent it enhances office cooling system performance in comparison to night cooling insemi-arid climate ?.J Build Eng,28,101020.
  13. Li, T,Zhai, Y,He, S,Gan, W,Wei, Z,Heidarinejad, M(2019).A radiative cooling structural material.Science,364,760-763.
  14. long Kou, J,Jurado, Z,Chen, Z,Fan, S,Minnich, AJ(2017).Daytime radiative cooling using near-black infrared emitters.ACS Photonics,4,626-630.
  15. Mandal, J,Fu, Y,Overvig, AC,Jia, M,Sun, K,Shi, NN(2018).Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling.Science,362,315-319.
  16. Nilsson, TMJ,Niklasson, GA(1995).Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils.Sol Energy Mater Sol Cells,37,93-118.
  17. Olwi, IA,Sabbagh, JA,Khalifa, AMA(1992).Mathematical modeling of passive dry cooling for power plants in arid land.Sol Energy,48,279-286.
  18. Peng, Y,Chen, J,Song, AY,Catrysse, PB,Hsu, PC,Cai, L(2018).Nanoporous polyethylene microfibres for large-scale radiative cooling fabric.Nat Sustain,1,105-112.
  19. Plumley, JB,Plumley, JB,Han, SJ,Hsu, K,Cytrynbaum, J,Peng, TL(2018).Effective radiative cooling by paint-format microsphere-based photonic random media.ACS Photonics,5,1181-1187.
  20. Raman, AP,Anoma, MA,Zhu, L,Rephaeli, E,Fan, S(2014).Passive radiative cooling below ambient air temperature under direct sunlight.Nature,515,540-544.
  21. Sabbagh, JA,Khalifa, AMA,Olwi, IA(1993).Development of passive dry cooling system for power plants in arid land.Sol Energy,51,431-447.
  22. Sarkar, J(2009).Second law analysis of supercritical CO2recompression Brayton cycle.Energy,34,1172-1178.
  23. Wang, X,Liu, X,Li, Z,Zhang, H,Yang, Z,Zhou, H(2020).Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling.Adv Funct Mater,30,1907562.
  24. Weber, MF,Stover, CA,Gilbert, LR,Nevitt, TJ,Ouderkirk, AJ(2000).Giant birefringent optics in multilayer polymer mirrors.Science,287,2451-2456.
  25. Yuan, H,Yang, C,Zheng, X,Mu, W,Wag, Z,Yuan, W(2018).Effective , angleindependent radiative cooler based on one-dimensional photonic crystal.Optic Express,26,27885-27893.
  26. Zeyghami, M,Khalili, F(2015).Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling.Energy Convers Manag,106,10-20.
  27. Zhai, Y,Ma, Y,David, SN,Zhao, D,Lou, R(2017).Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling.Science,355,1062-1066.
  28. Zhang, K,Zhao, D,Zhai, Y,Yin, X,Yang, R,Tan, G(2017).Modelling study of the low-pumppower demand constructal T-shaped pipe network for a large scale radiative cooled-cold storage system.Appl Therm Eng,127,1564-1573.
  29. Zhao, D,Aili, A,Zhai, Y,Lu, J,Kidd, D,Tan, G(2019).Subambient cooling of water: toward real-world applications of daytime radiative cooling.Joule,3,111-123.