题名

具磁力泵之脈衝式熱管性能分析

并列篇名

Experimental Investigation on the Performance of Pulsating Heat Pipe with Magnetic Pump

DOI

10.29911/JEHVACE_NEW.202201_(131).0003

作者

李欣恩(Hsin-En Li);林宏運(Hung-Yun Lin);曾智勇(Chih-Yung Tseng);謝承原(Cheng-Yuan Hsieh);傅本然(Ben-Ran Fu)

关键词

脈衝式熱管 ; 磁力驅動泵 ; 熱阻 ; Pulsating Heat Pipe ; Magnetic Drive Pump ; Thermal Resistance

期刊名称

冷凍空調&能源科技

卷期/出版年月

131期(2022 / 01 / 10)

页次

33 - 39

内容语文

繁體中文

中文摘要

本研究提出一種具磁力驅動泵之立體型脈衝式熱管,藉由冷凝端磁力驅動泵的輔助動力源設計,為提高工作流體於蒸發段的補給速率。本研究之脈衝式熱管以水與甲醇為工作流體,體積充填率分別為60%、70%與80%,輸入功率200 W至600 W,蒸發段與冷凝段傳熱距離25 cm。實驗探討有無開啟磁力泵對脈衝式熱管的熱阻改善率。實驗結果顯示,在輸入功率400 W、充填率70%的水時,有開啟磁力泵之立體型脈衝式熱管相較於無開啟磁力泵之立體型脈衝式熱管,熱阻改善率可達5.3%。而在輸入功率600 W,充填率70%的甲醇時,有開啟磁力泵之立體型脈衝式熱管相較於無開啟磁力泵之立體型脈衝式熱管,熱阻改善率可高達60.9%。

英文摘要

This study proposes a pulsating heat pipe with a magnetic drive pump. The auxiliary power source of the magnetic drive pump at the condensing section is designed to increase the replenishment rate of the working fluid in the evaporation section. The pulsating heat pipe in this study uses water and methanol as working fluids with volume filling rates of 60%~80%. Input powers are 200~600 W and the heat transfer distance between the evaporation and condensation sections is 25 cm. The experiment explores the thermal resistance improvement of the pulsating heat pipe with or without turning on the magnetic pump. The experimental results show that when the input power is 400 W and the filling rate of water is 70%, the thermal resistance improvement of the pulsating heat pipe with the magnetic pump is 5.3% compared to the pulsed heat pipe without the magnetic pump. In addition, when the input power is 600 W and the filling rate of methanol is 70%, the thermal resistance improvement of the pulsed heat pipe with the magnetic drive pump can be as high as 60.9% compared to the pulse heat pipe without the magnetic drive pump.

主题分类 工程學 > 電機工程
参考文献
  1. Akachi, H.(1990).Akachi, H. (1990). U.S. Patent No. 4,921,041. Washington, DC: U.S. Patent and Trademark Office..
  2. Akachi, H.(1993).Akachi, H. (1993). U.S. Patent No. 5,219,020. Washington, DC: U.S. Patent and Trademark Office..
  3. Akachi, H.,Polasek, F.,Stulc, P.(1996).Pulsating Heat Pipe.5th National Heat Transfer Symposium of Australia
  4. Chen, Y.,He, Y.,Zhu, X.(2020).Non-Contact Monitoring on the Flow Status inside a Pulsating Heat Pipe.Sensors,20(20),5955.
  5. Han, X.,Wang, X.,Zheng, H.,Xu, X.,Chen, G.(2016).Review of the development of pulsating heat pipe for heat dissipation.Renewable and Sustainable Energy Reviews,59,692-709.
  6. Khandekar, S.,Gautam, A. P.,Sharma, P. K.(2009).Multiple quasi-steady states in a closed loop pulsating heat pipe.International Journal of Thermal Sciences,48(3),535-546.
  7. Patel, V. M.,Mehta, H. B.(2019).Channel wise displacement - velocity - frequency analysis in acetone charged multi-turn Closed Loop Pulsating Heat Pipe.Energy Conversion and Management,195,367-383.
  8. Spinato, G.,Borhani, N.,d'Entremont, B. P.,Thome, J. R.(2015).Time-strip visualization and thermo-hydrodynamics in a closed loop pulsating heat pipe.Applied Thermal Engineering,78,364-372.
  9. Sun, Q.,Qu, J.,Li, X.,Yuan, J.(2017).Experimental investigation of thermos-hydrodynamic behavior in a closed loop oscillating heat pipe.Experimental Thermal and Fluid Science,82,450-458.
  10. Takawale, A.,Abraham, S.,Sielaff, A.,Mahapatra, P. S.,Pattamatta, A.,Stephan, P.(2019).A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe.Applied Thermal Engineering,149,613-624.
  11. Xu, J. L.,Li, Y. X.,Wong, T. N.(2005).High speed flow visualization of a closed loop pulsating heat pipe.International Journal of Heat and Mass Transfer,48(16),3338-3351.
  12. Xue, Z. H.,Qu, W.(2017).Experimental and theoretical research on a ammonia pulsating heat pipe: New full visualization of flow pattern and operating mechanism study.International Journal of Heat and Mass Transfer,106,149-166.