题名

結合蛇型與交趾流場設計探討質子交換膜燃料電池性能分析

并列篇名

Combining serpentine and interdigitated flow-field pattern to investigate the impact on PEMFC

DOI

10.29911/JEHVACE_NEW.202307_(140).0001

作者

陳昱伶;楊秉純

关键词

質子交換膜燃料電池 ; 壓損 ; 流道設計 ; 蛇型 ; 交趾型 ; PEMFC ; Pressure drop ; Flow-field pattern ; Serpentine ; Interdigitated

期刊名称

冷凍空調&能源科技

卷期/出版年月

140期(2023 / 07 / 10)

页次

24 - 33

内容语文

繁體中文;英文

中文摘要

質子交換膜燃料電池中目前最為廣泛應用的流場為單蛇型(Type-A)以及交趾型(Type-C);前者有較佳的排水性能,但是其流道長度造成較大的壓損會需要提供較大的作功補償這個缺陷;後者因為有著封閉的流道能夠迫使反應氣體到達電化學反應層,壓損的情形也同樣受到影響。因此為了留下優點摒除缺點,本研究設計了一種結合蛇型及交趾型的流道設計(Type-B),並且在模擬上與Type-A、Type-C做比較,模擬上觀察其壓損、輸出電流與氧氣、水分佈的情形;實驗上則是藉由改變操作條件(反應氣體加濕溫度、計量比)觀察對於Type-A及Type-B在輸出電流和壓損的差異。研究得知在模擬上Type-B液態水的含量較Type-A來的少,壓損方面Type-C比起其他兩者都低上許多,顯示流道長度確實是影響壓損的主要原因之一。在實驗方面Type-B的性能在各方面又更為顯著,輸出電流在高負載下無論是反應氣體加濕溫度、計量比表現都比Type-A佳,壓損更是有所改善。此設計使用於PEMFC上對於應用於移動式載具可以提供更好的性能。

英文摘要

In PEMFC (Proton Exchange Membrane Fuel Cell), enhancing the performance accounts for a well-designed flow-field pattern of the bipolar plates. A single channel serpentine(Type-A) and interdigitated(Type-C) pattern are commonly used on PEMFC. The former has better water removal but a large pressure drop will be caused. It requires more power to compensate this disadvantage. The latter with dead ended channels can force the reactant going through the reacting layer but also suffer from large pressure drop. To eliminate the shortcoming and keep the advantages, we combined the characteristics of serpentine and interdigitated to design a new flow-field pattern (Type- B) for PEMFC and compared with Type-A and Type-C in the simulation. Investigating their pressure drop, polarizing curve, oxygen concentration and water distribution by simulation. Also presented the experiments with different operating parameters (humidity, stoichiometry) to investigate the results for pressure drop and polarization curve perspectives with these two type design. The simulation results show that Type-B has less water content than Type-A. The pressure drop of Type-C is lowest compare to others, which indicate the length of channel had great impact on it. On the other side, Type-B has effective performance on the experiment. Modifying the humidify temperature or reactant stoichiometry on high load condition. The output current of Type-B is better than Type-A and so is the pressure drop. This design can offer better performance on automobile that using PEMFC.

主题分类 工程學 > 電機工程
参考文献
  1. Ahmed, S.,Krumpelt, M.(2001).Hydrogen from hydrocarbon fuels for fuel cells.International journal of hydrogen energy,26(4),291-301.
  2. Borup, R. L.,Vanderborgh, N. E.(1995).Design and testing criteria for bipolar plate materials for PEM fuel cell applications.MRS Online Proceedings Library (OPL),393
  3. Charoen-amornkitt, P.,Santiprasertkul, T.,Munprakobkij, P.,Limjeerajarus, N.(2015).Numerical Study of a Polymer Electrolyte Fuel Cell with a Hybrid Serpentine-Interdigitated Flow Field Design.6th TSME International Conference on Mechanical Engineering,Hua-Hin:
  4. Dodds, P. E.(2015).Hydrogen and fuel cell technologies for heating: A review.International journal of hydrogen energy,40(5),2065-2083.
  5. Ge, S.-H.,Yi, B.-L.(2003).A mathematical model for PEMFC in different flow modes.Journal of Power Sources,124(1),1-11.
  6. Guo, N.,Leu, M. C.,Koylu, U. O.(2014).Bio-inspired flow field designs for polymer electrolyte membrane fuel cells.International Journal of Hydrogen Energy,39(36),21185-21195.
  7. Hashemi, F.,Rowshanzamir, S.,Rezakazemi, M.(2012).CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields.Mathematical and Computer Modelling,55(3-4),1540-1557.
  8. Jung, N.,Chung, D. Y.,Ryu, J.,Yoo, S. J.,Sung, Y.-E.(2014).Pt-based nanoarchitecture and catalyst design for fuel cell applications.Nano Today,9(4),433-456.
  9. Kazim, A.,Liu, H.,Forges, P.(1999).Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields.Journal of Applied Electrochemistry,29(12),1409-1416.
  10. Marappan, M.(2021).Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review.Chem Rec,21(4),663-714.
  11. Mehta, V.,Cooper, J. S.(2003).Review and analysis of PEM fuel cell design and manufacturing.Journal of Power Sources,114(1),32-53.
  12. Wilberforce, T.(2019).A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells.Renewable and Sustainable Energy Reviews,111,236-260.
  13. Yan, Q.,Toghiani, H.,Causey, H.(2006).Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes.Journal of Power Sources,161(1),492-502.