题名

數值模擬外橢球體與內球體間之層流自然對流熱傳

并列篇名

Numerical simulation of free convection heat transfer between outer ellipsoid and inner sphere

作者

陳玟瑞(Wen Ruey Chen)

关键词

液壓半徑比與軸比 ; hydraulic radius ratio and axis ratio

期刊名称

冷凍空調&能源科技

卷期/出版年月

119期(2020 / 01 / 10)

页次

36 - 46

内容语文

繁體中文;英文

中文摘要

數值模擬液壓半徑比與軸比效應之牛頓流體在等溫邊界條件介於外橢球體與內球體間之自然對流熱傳現象。在一穩定溫度變化之等溫邊界條件為內球面為等溫熱面同時外橢球為等溫冷面。有系統的模擬計算完成幾個不同的普郎多數和某一範圍的萊利數,在流場和溫度場上的幾何比參數(Ω和R)之效應解出平均紐賽數。控制方程式分別為渦旋、流線函數、能量方程式在球極座標系統表示之。參數探討所引導的結果更進一步展現熱流場主要是以固定的普朗多數0.7,萊利數範圍從10^3到10^5,和參數(ln Ω)從-0.8到8.0的範圍。針對以上,平均熱傳率傳遞穿越過不同複合幾何環間的熱對流結構詳述有一重要效應。

英文摘要

The effects of hydraulic radius ratio and axis ratio with a Newtonain fluid have been investigated numerically to determine heat transfer by natural convection between the sphere and ellipsoid with isothermal boundary conditions. The inner sphere and outer ellipsoid were heated and cooled in a steady change of temperature. Calculations were carried out systematically for a range of the Rayleigh numbers to determine the average Nusselt numbers which are affected by the geometric ratio parameters (Ω and R) on the flow and temperature fields. The governing equations, in terms of vorticity, stream function and temperature are expressed in a spherical polar coordinate system. Results of the parametric study conducted further reveal that the heat and flow fields are primarily dependent on the Rayleigh number, hydraulic radius ratio, and axis ratio, for a fixed Prandtl number of 0.7, with the Rayleigh number ranging from 10^3 to 10^5 , and the parameters (ln Ω) varying from -0.8 to 8.0. Above all, the specification of different convective configurations has a significant effect on the average heat transfer rate across the composite annulus gap.

主题分类 工程學 > 電機工程
参考文献
  1. Anderson, D.A.,Tannehill, J.C.,Pletcher, R.H.(1984).Computational Fluid Mechanics and Heat Transfer.Washington, D. C.:Hemisphere.
  2. Astill, K.N.,Leong, H.,Martorana, R.(1980).A numerical solution for natural convection in concentric spherical annuli.Proc. 19th Nat. Heat Tr. Conf.
  3. Atayılmaz, S.O.,Dem, H.,Sevindir, M. K.,Agra, O.,Teke, I.,Dalkılic, A. S.(2017).Natural convection heat transfer from horizontal concentric and eccentric cylinder systems cooling in the ambient airand determination of inner cylinder.Heat and mass Transfer,53,2677-2692.
  4. Bishop, E.H.,Mack, L.R.,Scanlan, J.A.(1966).Heat transfer by natural convection between concentric spheres.Int. J. Heat Mass Transfer,9,649-662.
  5. Chen, W.R.(2007).A numerical study of laminar free convection heat transfer between inner sphere and outer vertical cylinder.Int. J. Heat Mass Transfer,50,2656-2666.
  6. Chen, W.R.(2003).Numerical study of thermal wall boundary effects for transient naturl convection between concentric and vertically eccentric spheres.Numer. Heat Transfer Part A,44,443-449.
  7. Chen, W.R.(2005).Transient natural convection of micropolar fluids between concentric and vertically eccentric spheres.Int. J. Heat Mass Transfer,48,1936-1951.
  8. Chiu, C.P.,Chen, W.R.(1996).Transient natural convection heat transfer between concentric and vertically eccentric spheres.Int. J. Heat Mass Transfer,39,1439-1452.
  9. Chiu, C.P.,Chen, W.R.(1996).Transient natural convection between concentric and vertically eccentric spheres with mixed boundary conditions.Heat Mass Transfer,31,137-143.
  10. Chiu, C.P.,Shich, J.Y.,Chen, W.R.(1999).Transient natural convection of micropolar fluids in concentric spherical annuli.Acta Mechanica,132,75-92.
  11. Chu, H.S.,Lee, T.S.(1993).Lee, Transient natural convection heat transfer between concentric spheres.Int. J. Heat Mass Transfer,36,3159-3170.
  12. Chung, J.D.,Kim, C.-J.,Yoo, H.,Lee, J.S.(1999).Numerical investigation on the bifurcative natural convection in a horizontal concentric annulus.Numer. Heat Transfer Part A,36(3),291-307.
  13. Darzi, A.R.,Farhadi, M.,Sedighi, K.(2012).Numerical study of melting inside concentric and eccentric horizontal annulus.Applied Mathematical Modelling,36,4080-4086.
  14. Ei-Shaarawi, M.A.I.,Negm, A. A. A.(1999).Conjugate natural convection heat transfer in an open-ended vertical concentric annulus.Numer. Heat Transfer Part A,36,639-655.
  15. Fujii, M.,Takamatsu, H.,Fujii, T.(1987).A numerical analysis of free convection around and isothermal sphere (effects of space and Prandtl number).Proceedings of 1987 ASME-JSME Thermal Engineering Joint Conference
  16. Fujii, T.,Honda, T.,Fujii, M.(1984).A numerical analysis of laminar free convection around an isothermal sphere: finite-difference solution of the full Navier-Stokes and energy equations between of concentric spheres.Numer. Heat Transfer,7,103-111.
  17. Garg, V.K.(1992).Natural convection between concentric spheres.Int. J. Heat Mass Transfer,35,1935-1945.
  18. Guj, G.,Stella, F.(1995).Natural convection in horizontal eccentric annuli: Numerical study.Numer. Heat Transfer Part A,27(1),89-105.
  19. Hadjadj, A.,El kyal, M.(1999).Effect of two sinusoidal protuberances on natural convection in a vertical concentric annulus.Numer. Heat Transfer Part A,36(3),273-289.
  20. Han, C.Y.,Baek, S.W.(1999).Natural convection phenomena affected by radiation in concentric and eccentric horizontal cylindrical annuli.Numer. Heat Transfer Part A,36(5),473-488.
  21. Mack, L.R.,Hardee, H.C.(1968).Natural convection between concentric spheres at low Rayleigh numbers.Int. J. Heat Mass Transfer,11,387-396.
  22. Mochimaru, Y.(1989).Transient Natural convection heat transfer in a spherical cavity.Heat Transfer-Jap. Res.,18,9-19.
  23. Moukalled, F.,Diab, H.(1993).Laminar natural convection in a horizontal rhombic annulus.Numer. Heat Transfer Part A,24(1),89-107.
  24. Ozoe, H.,Fujii, K.,Shibata, T.,Kuriyama, H.,Churchill, S.W.(1985).Three-dimensional numerical analysis of natural convection in a spherical annulus.Numer. Heat Transfer,8,383-406.
  25. Ozoe, H.,Kuriyama, H.,Takami, A.(1987).Transient natural convection in a spherical and a hemispherical enclosure.Proceedings of 1987 ASME-JSME Thermal Engineering Joint Conference
  26. Scanlan, J.A.,Bishop, E.H.,Powe, R.E.(1970).Natural convection heat transfer between concentric spheres.Int. J. Heat Mass Transfer,13,1857-1872.
  27. Schneider, G.E.,Zedan, M.(1981).A modified strongly implicit procedure for the numerical solution of field problems.Numer. Heat Transfer,4,1-19.
  28. Sheikholeslami, M.,Li, Zhixiong,Shamlooei, M.(2018).Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation.physics letters A,382,1615-1632.
  29. Shu, C.,Yeo, K.S.,Yao, Q.(2000).An efficient approach to simulate natural convection in arbitrarily eccentric annuli by vorticity-stream function formulation.Numer. Heat Transfer Part A,38(7),739-756.
  30. Singh, S.N.,Chen, J.(1980).Numerical solution for free convection between concentric spheres at moderate Grashof numbers.Numer. Heat Transfer,3,441-459.
  31. Yin, S.H.,Powe, J.A.,Scanlan, J.A.,Bishop, E.H.(1973).Natural convection folw patterns in spherical annui.Int. J. Heat Mass Transfer,16,1785-1795.