题名

Characteristics of Soil Nutrients in Sediment Storage Dam Land with Different Silting Periods on Grain Yield of Maize

并列篇名

不同淤積期淤地壩地土壤養分特徵對玉米籽粒產量的影響

DOI

10.6937/TWC.202003/PP_68(1).0003

作者

刑英英(YING-YING XING);杜常亮(CHANG-LIANG DU);王秀康(XIU-KANG WANG)

关键词

Soil nitrate nitrogen ; Soil ammonium nitrogen ; Soil available nitrogen ; Soil available potassium ; Sediment storage dam ; 土壤硝態氮 ; 土壤銨氮 ; 土壤速效氮 ; 土壤有效鉀 ; 淤地壩

期刊名称

台灣水利

卷期/出版年月

68卷1期(2020 / 03 / 01)

页次

26 - 35

内容语文

英文

中文摘要

Large-scale sediment collection in the Loess Plateau of China resulting in many sediment storage dams were built. However, the effects of soil nutrients on maize grain yield at different silting periods are still unknown. A combination of field investigation and data analysis were used to study the effects of soil nutrients in different silting periods on the variation of maize yield at the sediment storage dam lands. Four areas: (1) ordinary land (CK), (2) 5-year sediment storage dam land (T5), (3) 10-year sediment storage dam land (T10) and (4) 30-year sediment storage dam land (T30) were evaluated in soil nutrients and grain yield of maize. The highest grain yield was obtained in T5 treatment (7,413 kg ha^(-1)), which was 4%, 15% and 23% higher than that of T10, T30 and CK treatments, respectively. The soil pH value in the sediment storage dam land decreased with the increase of silting period. Averaged soil depth, the soil electrical conductivity increased successively under four treatments: CK < T10 < T30 < T5. The highest value of soil organic matter was obtained in T5 treatment, which was 5%, 20.8% and 26.4% higher than that in T10, T30 and CK treatment, respectively. The soil organic matter increased in the order: CK < T30 < T10 < T5. Similar results were found in soil nitrate nitrogen (N), ammonium N and available N, but the soil available potassium in four treatments increased in the order: T30 < T10 < T5 < CK. The available potassium content in the whole layer of soil was significantly different. The highest value of soil available phosphorus was obtained in T5, which was 16.2%, 19.1% and 29.6% higher than that in CK, T10 and T30 treatment, respectively. We recommend taking some measures to prevent the decline of soil organic matter content in sediment storage dam land. In particular, the precise potassium and phosphate fertilizer application management on sediment storage dam land is necessary in future practices. The results of this study facilitate the understanding of soil nutrients in sediment storage dam land with different silting period and provide effective strategies to prevent the soil nutrient reduction.

英文摘要

在中國黃土高原地區開展了大規模的泥沙收集工作,建成了許多淤地壩。但不同淤積期壩地土壤養分對玉米籽粒產量的影響尚不清楚。本文採用田間資料收集和資料分析相結合的方法,研究了不同淤積期土壤養分對壩地玉米產量變化的影響。試驗由四種壩地組成(1)普通土地(CK);(2)5年淤地壩土地(T5);(3)10年淤地壩土地(T10)和(4)30年淤地壩土地(T30)的土壤養分和玉米籽粒產量進行了評價。T5處理的籽粒產量最高(7,413 kg ha^(-1)),分別比T10、T30和CK處理高4%、15%和23%。淤地壩壩地土壤pH值隨淤積期的增加而降低。平均土層深度、土壤電導率在四種處理方式下依次升高順序為:CK < T10 < T30 < T5。T5處理土壤有機質含量最高,分別比T10、T30和CK處理高5%、20.8%和26.4%。土壤有機質含量依次增加順序為:CK < T30 < T10 < T5。土壤硝態氮(N)、銨態氮和速效氮也有相似的結果,但四種處理的土壤速效鉀含量依次增加順序為:T30 < T10 < T5 < CK。全層土壤速效鉀含量差異顯著。土壤有效磷在T5中最高,分別比CK、T10和T30處理高16.2%、19.1%和29.6%。建議採取相應措施,防止淤地壩區土壤有機質含量下降。特別是對淤地壩土地進行精確的鉀磷肥施用管理是今後需要做的工作。研究結果提高了對不同淤積期淤地壩區土壤養分的認識,為防止淤地壩區土壤養分減少提供了有益的對策。

主题分类 工程學 > 水利工程
参考文献
  1. Ayuke, F. O.,Brussaard, L.,Vanlauwe, B.,Six, J.,Lelei, D. K.,Kibunja, C. N.,Pulleman, M. M.(2011).Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.Applied Soil Ecology,48,53-62.
  2. Bai, J.,Ouyang, H.,Deng, W.,Zhu, Y.,Zhang, X.,Wang, Q.(2005).Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands.Geoderma,124,181-192.
  3. Basamba, T. A.,Amézquita, E.,Singh, B. R.,Rao, I. M.(2006).Effects of tillage systems on soil physical properties, root distribution and maize yield on a Colombian acid-savanna Oxisol.Acta Agriculturae Scandinavica, Section B–Soil & Plant Science,56,255-262.
  4. Belay, A.,Claassens, A.,Wehner, F.(2002).Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation.Biology and Fertility of Soils,35,420-427.
  5. Bell, C.,Mcintyre, N.,Cox, S.,Tissue, D.,Zak, J.(2008).Soil Microbial Responses to Temporal Variations of Moisture and Temperature in a Chihuahuan Desert Grassland.Microbial Ecology,56,153.
  6. Borja, P.,Molina, A.,Govers, G.,Vanacker, V.(2018).Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains.Catena,165,42-53.
  7. Celik, I.,Gunal, H.,Budak, M.,Akpinar, C.(2010).Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions.Geoderma,160,236-243.
  8. Dai, X.,Ouyang, Z.,Li, Y.,Wang, H.(2013).Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.PLOS ONE,8,e82147.
  9. Fanab, X.,Korup, O.,Gorum, T.,Xu, Q.,Dai, F.,Huang, R.,Wang, G.(2012).Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China.Geomorphology,171-172,58-68.
  10. Fox, G. A.,Sheshukov, A.,Cruse, R.,Kolar, R. L.,Guertault, L.,Gesch, K. R.,Dutnell, R. C.(2016).Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion.Environmental Management,57,945-955.
  11. Hanan, E. J.,Schimel, J. P.,Dowdy, K.,D'Antonio, C. M.(2016).Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral.Soil Biology & Biochemistry,95,87-99.
  12. Hendershot, W.(2007).Soil organic matter Impacts upon fluxes of cadmium in soils measured using diffusive gradients in thin films.Communications in Soil Science & Plant Analysis,38,1619-1636.
  13. Huang, J.,Pedrera-Parrilla, A.,Vanderlinden, K.,Taguas, E. V.,Gómez, J. A.,Triantafilis, J.(2017).Potential to map depth-specific soil organic matter content across an olive grove using quasi-2d and quasi-3d inversion of DUALEM-21 data.Catena,152,207-217.
  14. Jin, L.,Hu, K.,Deelstra, J.,Li, B.,Wei, D.,Wang, H.(2014).Evaluation of nitrogen fate, water and nitrogen use efficiencies of winter wheat in North China Plain based on model approach.Acta Agriculturae Scandinavica, Section B — Soil & Plant Science,63,127-138.
  15. Kiboi, M. N.,Ngetich, K. F.,Diels, J.,Mucheru-Muna, M.,Mugwe, J.,Mugendi, D. N.(2017).Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the Central Highlands of Kenya.Soil & Tillage Research,170,157-166.
  16. Kuang, E.,Chi, F.,Jeng, A. S.,Su, Q.,Zhang, J.(2014).A comparison of different methods of decomposing maize straw in China.Acta Agriculturae Scandinavica,63,186-194.
  17. Liu, C.,Li, Z.,Dong, Y.,Nie, X.,Liu, L.,Xiao, H.,Zeng, G.(2017).Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China?.Ecological Engineering,101,220-226.
  18. Liu, J.,Bu, L.,Zhu, L.,Luo, S.,Chen, X.,Li, S.,Hill, R. L.,Zhao, Y.(2013).Nitrogen fertilization effects on nitrogen balance and use efficiency for film-mulched maize in a semiarid region.Acta Agriculturae Scandinavica,63,612-622.
  19. Liu, X.,Gao, Y.,Sanbao, M. A.,Dong, G.(2018).Sediment reduction of warping dams and its timeliness in the Loess Plateau.Journal of Hydraulic Engineering
  20. Lu, D.,Li, C.,Sokolwski, E.,Magen, H.,Chen, X.,Wang, H.,Zhou, J.(2017).Crop yield and soil available potassium changes as affected by potassium rate in rice–wheat systems.Field Crops Research,214,38-44.
  21. Magaia, E.,Arvidsson, J.,Brito, R.,Joel, A.(2016).Maize root development and grain production as affected by soil and water management on a sandy soil in a semi-arid region of southern Mozambique.Acta Agriculturae Scandinavica, Section B — Soil & Plant Science,66,247-258.
  22. Martínez-Murillo, J. F.,Nadal-Romero, E.,Regüés, D.,Cerdà, A.,Poesen, J.(2013).Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review.Catena,106,101-112.
  23. Mekonnen, M.,Keesstra, S. D.,Baartman, J. E.,Ritsema, C. J.,Melesse, A. M.(2015).Evaluating sediment storage dams: structural off-site sediment trapping measures in northwest Ethiopia.Cuadernos De Investigación Geográfica,41,16.
  24. Povilaitis, V.,Šlepetienė, A.,Šlepetys, J.,Lazauskas, S.,Tilvikienė, V.,AmalevičiūTė, K,Feizienė, D.,Feiza, V.,Liaudanskienė, I.,Cesevičienė, J.(2016).The productivity and energy potential of alfalfa, fodder galega and maize plants under the conditions of the nemoral zone.Acta Agriculturae Scandinavica,66,259-266.
  25. Ribeiro, P. F.,Badu-Apraku, B.,Gracen, V. E.,Danquah, E. Y.,Garcia-Oliveira, A. L.,Asante, M. D.,Afriyie-Debrah, C.,Gedil, M.(2017).Identification of QTLs for grain yield and other traits in tropical maize under high and low soil-nitrogen environments.Crop Science
  26. Romero-Díaz, A.,Marín-Sanleandro, P.,Ortiz-Silla, R.(2012).Loss of soil fertility estimated from sediment trapped in check dams.South-eastern Spain Catena,99,42-53.
  27. Snyder, N. P.,Rubin, D. M.,Alpers, C. N.,Childs, J. R.,Curtis, J. A.,Flint, L. E.,Wright, S. A.(2004).Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California.Water Resources Research,40,151-175.
  28. Thorup-Kristensen, K.(1993).Root development of nitrogen catch crops and of a succeeding crop of broccoli.Acta Agriculturae Scandinavica, Section B — Soil & Plant Science,43,58-64.
  29. Vezzoli, G.,Ghielmi, G.,Mondaca, G.,Resentini, A.,Villarroel, E. K.,Padoan, M.,Gentile, P.(2013).Quantifying modern erosion rates and river-sediment contamination in the Bolivian Andes.Journal of South American Earth Sciences,45,42-55.
  30. Wang, C.,Zheng, M.,Song, W.,Wen, S.,Wang, B.,Zhu, C.,Shen, R.(2017).Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China.Soil Biology & Biochemistry,113,240-249.
  31. Wang, X. L.,Sun, G. J.,Jia, Y.,Li, F. M.,Xu, J. Z.(2008).Crop yield and soil water restoration on 9-year-old alfalfa pasture in the semiarid Loess Plateau of China.Agricultural Water Management,95,190-198.
  32. Wang, X.,Du, C.,Xing, J.,Xing, Y.(2016).Effects of water deficit in different growth stages and nitrogen fertilizer levels on potted maize root growth and dry matter accumulation.Taiwan Water Conservancy,64,59-71.
  33. Wang, X.,Fan, J.,Xing, Y.,Xu, G.,Wang, H.,Deng, J.,Wang, Y.,Zhang, F.,Li, P.,Li, Z.(2019).The effects of mulch and nitrogen fertilizer on the soil environment of crop plants.Advances in Agronomy,153,121-173.
  34. Wang, X.,Li, Z.,Xing, Y.(2015).Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China.Agricultural Water Management,161,53-64.
  35. Wang, X.,Xing, Y.(2016).Effects of mulching and nitrogen on soil nitrate-N distribution, leaching and nitrogen use efficiency of Maize (Zea mays L.).PLOS ONE,11(8),e0161612.
  36. Wei, W.,Chen, L.,Zhang, H.,Chen, J.(2015).Effect of rainfall variation and landscape change on runoff and sediment yield from a loess hilly catchment in China.Environmental Earth Sciences,73,1005-1016.
  37. Zhang, Z.,Yuan, Y.,Zhao, W.,He, H.,Li, D.,He, W.,Liu, Q.,Yin, H.(2017).Seasonal variations in the soil amino acid pool and flux following the conversion of a natural forest to a pine plantation on the eastern Tibetan Plateau, China.Soil Biology & Biochemistry,105,1-11.
  38. Zhao, G.,Kondolf, G. M.,Mu, X.,Han, M.,He, Z.,Zan, R.,Wang, F.,Gao, P.,Sun, W.(2017).Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China.Catena,148,126-137.