题名

Nonlinear Prediction of Daily Streamflow Time Series Models in the Hualien Area

并列篇名

應用非線性混沌理論方法預測花蓮地區河川日平均流量

DOI

10.6937/TWC.202103/PP_69(1).0001

作者

沈少文(SHAW WEN SHEEN)

关键词

chaos theory ; local approximation method ; Nash-Sutcliffe efficiency ; persistence index ; streamflow prediction ; 混沌理論 ; 局部漸進預測法 ; 納許效率係數 ; 持續指數 ; 河川流量預測

期刊名称

台灣水利

卷期/出版年月

69卷1期(2021 / 03 / 01)

页次

1 - 19

内容语文

英文

中文摘要

The aim of this study was to employ methods from chaos theory, including phase space reconstruction and local approximation methods, to examine the existence of chaos in streamflow dynamics. The major objective was to investigate and compare the prediction accuracy of the daily streamflow time series from the gauging stations in the eastern Taiwan. The gauging stations were at Xiuguluam River. The observed streamflow time series spanned a time period of 30 years from 1990 to 2019. The first 27-year streamflow data were used as the training data set, and the remaining 3-year were used as the testing data set. This study applied efficiency criteria: coefficient of variation, Nash-Sutcliffe efficiency, and persistence index. The results concluded that there was existence of chaos in streamflow dynamics. The prediction accuracy performance was better in the recession period than in the rising period at the gauging stations used in this study. Local approximation method was an effective model to predict daily streamflow time series.

英文摘要

本研究應用混沌理論方法分析臺灣東部花蓮地區河川日流量,本研究分析秀姑巒溪瑞穗大橋測站與玉里大橋測站30年(1990-2019)河川日平均流量資料,使用27年(1990-2016)河川日平均流量資料來預測最後3年(2017-2019)河川日平均流量,本研究使用變異係數、納許效率係數與持續指數來評估預測模型正確有效程度,研究結果指出研究地區流量測站河川日平均流量顯示有混沌現象,預測模型於河川流量退水段預測較河川流量上升段佳,局部漸進預測法能有效預測河川日平均流量。

主题分类 工程學 > 水利工程
参考文献
  1. Burt, J. E.,Barber, G. M.(1996).Elementary Statistics for Geographers.New York:Guilford.
  2. Crutchfield, J. P.,Farmer, J. D.,Packard, N. H.,Shaw, R. S(1986).Chaos.Scientific American,244,46-57.
  3. Di, C.,Wang, T.,Istanbulluoglu, E.,Jayawardena, A. W.,Li, S.,Chen, X.(2019).Deterministic chaotic dynamics in soil moisture across Nebraska.Journal of Hydrology,578,1-12.
  4. Farmer, J. D.,Sidorowich, J. J.(1987).Predicting chaotic time series.Physical Review Letters,59,845-848.
  5. Islam, M. N.,Sivakumar, B.(2002).Characterization and prediction of runoff dynamics: a nonlinear dynamical view.Advances in Water Resources,25,179-190.
  6. Jayawardena, A. W.(1997).Runoff forecasting using a local approximation method.Destructive Water: Water-Caused Natural Disasters-Their Abatement and Control,Oxford:
  7. Jayawardena, A. W.,Gurung, A. B.(2000).Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach.Journal of Hydrology,228,242-264.
  8. Jayawardena, A. W.,Lai, F.(1994).Analysis and prediction of chaos in rainfall and stream flow time series.Journal of Hydrology,153,23-52.
  9. Jayawardena, A. W.,Li, W. K.,Xu, P.(2002).Neighborhood selection for local modeling and prediction of hydrological time series.Journal of Hydrology,258,40-57.
  10. Kember, G.,Flower, A. C.,Holubeshen, J.(1993).Forecasting river flow using nonlinear dynamics.Stochastic Hydrology and Hydraulics,7,205-212.
  11. Khatibi, R.,Sivakumar, B.,Ghorbani, M. A.,Kisi, O.,Koçak, K.,Zadeh, D. F.(2012).Investigating chaos in river stage and discharge time series.Journal of Hydrology,414,108-117.
  12. Liu, Q.,Islam, S.,Rodriguez-Iturbe, I.,Le, Y.(1998).Phase-space analysis of daily streamflow: characterization and prediction.Advances in Water Resources,21,463-475.
  13. Mehr, A. D.,Kahya, E.(2017).A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction.Journal of Hydrology,549,603-615.
  14. Phoon, K. K.,Islam, M. N.,Liaw, C. Y.,Liong, S. Y.(2002).Practical inverse approach for forecasting nonlinear hydrological time series.Journal of Hydrologic Engineering,7,116-128.
  15. Porporato, A.,Ridolfi, L.(1996).Clues to the existence of deterministic chaos in river flow.International Journal of Modern Physics B,10,1821-1862.
  16. Porporato, A.,Ridolfi, L.(2001).Multivariate nonlinear prediction of river flows.Journal of Hydrology,248,109-122.
  17. Porporato, A.,Ridolfi, L.(1997).Nonlinear analysis of river flow time sequences.Water Resources Research,33,1353-1367.
  18. Sivakumar, B.(2001).Rainfall dynamics at different temporal scales: a chaotic perspective.Hydrology and Earth System Sciences,5,645-651.
  19. Sivakumar, B.(2017).Chaos in Hydrology: Bridging Determinism and Stochasticity.Netherlands:Springer.
  20. Sivakumar, B.(2000).Chaos theory in hydrology: important issues and interpretations.Journal of Hydrology,227,1-20.
  21. Sivakumar, B.(2009).Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward.Stochastic Environmental Research and Risk Assessment,23,1027-1036.
  22. Sivakumar, B.(2007).Nonlinear determinism in river flow: prediction as a possible indicator.Earth Surface Processes and Landforms,32,969-979.
  23. Sivakumar, B.(2005).Correlation dimension estimation of hydrological series and data size requirement: myth and reality.Hydrological Sciences Journal,50,591-603.
  24. Sivakumar, B.,Berndtsson, R.,Persson, M.(2001).Monthly runoff prediction using phase-space reconstruction.Hydrological Sciences Journal,46,377-387.
  25. Sivakumar, B.,Jayawardena, A. W.,Fernando, T. M. K. G.(2002).River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches.Journal of Hydrology,265,225-245.
  26. Sivakumar, B.,Jayawardena, A. W.,Li, W. K.(2007).Hydrologic complexity and classification: a simple data reconstruction approach.Hydrological Processes,21,2713-2728.
  27. Sivakumar, B.,Persson, M.,Berndtsson, R.,Uv, C. B.(2002).Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?.Water Resources Research,38,3–1-3–8.
  28. Sugihara, G.,May, R. M.(1990).Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature,344,734-741.
  29. Tsonis, A. A.,Elsner, J. B.(1992).Nonlinear prediction as a way of distinguishing chaos from random fractal sequences.Nature,358,217-220.