题名

Simulation of Local Scour Around A Bridge Pier Based on Different Turbulence Models and Formulae of Bedload Sediment Transport Rate

并列篇名

基於不同湍流模型與推移質輸沙率公式的橋墩局部沖刷數值模擬

DOI

10.6937/TWC.202203_70(1).0008

作者

ANBIN LI;GENGUANG ZHANG;AIMIN FAN;ZHIYI HU;HE SUN;CHANDARA MAN

关键词

Local scour around a pier ; CFD ; RNG k-ε model ; LES model ; Bed load transport rate formula ; 橋墩局部沖刷 ; RNG k-ε模型 ; LES模型 ; 推移質輸沙率公式

期刊名称

台灣水利

卷期/出版年月

70卷1期(2022 / 03 / 01)

页次

94 - 109

内容语文

英文

中文摘要

This study evaluated the applicability of two turbulence models, namely the Large Eddy Simulation (LES) and Re-Normalization Group (RNG) k-ε models, and two bed load transport rate formulae, namely the Meyer-Peter and Van Rijn formulae, for the simulation of local scour around a pier, and the reasons causing the difference in simulation results are analyzed. The specific sediment transport rate formula used had a much greater effect on the simulation results than that of the turbulence model used, with the LES model combined with the Meyer-Peter formula showing the best performance in representing the vortex body structure, scour shape and depth, with a relative error of the maximum scour depth of only 2.3% at a scour time T = 30 min. In contrast, the simulation results based on the RNG k-ε model using the Meyer-Peter formula showed a larger relative error of 7.2%, and the combination of the LES model with the Van Rijn formula exhibited the largest relative error of 15.5%. The results of this study can act as a reference for the simulation of scour at a pier and can be particularly helpful in guiding the selection of appropriate turbulence models and sediment transport rate formulae in practical application. In addition, this study provides technical support for the safety design of bridges across rivers.

英文摘要

本研究對兩種湍流模型(大渦模擬(LES)、重整化群(RNG k-ε))及兩個推移質輸沙率公式(Meyer-Peter和Van Rijn公式)在單圓柱橋墩局部繞流沖刷模擬中的適用性進行了分析評價,並就模擬結果間的差異原因進行了分析。結果表明:輸沙率公式對模擬結果的影響大於湍流模型;採用LES模型結合Meyer-Peter公式能較好地模擬橋墩繞流渦系結構及沖刷坑形態,當T=30 min時,最大沖刷深度模擬結果與試驗結果相對誤差僅為2.3%;採用RNG k-ε模型結合Meyer-Peter公式預測的最大沖刷深度與試驗結果相對誤差為7.2%,LES模型結合Van Rijn公式的預測的最大沖刷深度與試驗結果相對誤差為15.5%;研究成果可為橋墩局部沖刷類比提供參考,並對實際應用中如何採用合適的湍流模型、輸沙率公式有一定的指導意義,為跨河橋樑的安全設計提供了理論支撐。

主题分类 工程學 > 水利工程
参考文献
  1. (2014).GeoPlanet: Earth and Planetary Sciences.France:Institute of Geophysics, Polish Academy of Sciences.
  2. Ali KHMK, O(2002).Simulation of Flow around Piers.J. Hydraul. Res,40,161-174.
  3. Bagnold, RA(1966).,Washington, DC, USA:United States Government Printing Office.
  4. Breusers, HNC,Nicollet, G(1977).Local Scour around Cylindrical Piers.J. Hydraul. Res,15,211-252.
  5. Chen, XL(2008)。Tsinghua University。
  6. Ettema(1980).University of Auckland.
  7. Graf, WH,Istiarto, I(2002).Flow Pattern in the Scour Hole around a Cylinder.J. Hydraul. Res,40,13-20.
  8. Hoffmans, GJCM,Booij, R(1993).Two Dimensional Mathematical Modeling of Local Scour Holes.J. Hydraul. Res,3,615-634.
  9. Hoffmans, GJCM,Pilarczyk, KW(1995).Local Scour downstream of Hydraulic Structures.J. Hydraul. Eng,121(4),326-340.
  10. Li, Peilin,XF,Qiang, Liu,Mali, Gong(2013).Analysis of Wavefront Aberration Induced by Turbulent Flow Field in Liquid-Convection-Cooled Disk Laser.J. Opt. Soc. Am. B,30(8),2161-2167.
  11. Liang, Ge SOL(2005).3D Unsteady RANS Modeling of Complex Hydraulic Engineering Flows. II: Model Validation and Flow Physics.J. Hydraul. Eng,131(9),809-820.
  12. Liang, Ge SOL(2005).3D Unsteady RANS Modeling of Complex Hydraulic I: Numerical Model.J. Hydraul. Eng,131(9),800-808.
  13. Mahdi, Alemi RM(2018).Numerical Simulation of the Flow and Local Scour Process around Single and Complex Bridge Piers.Int. J. Civ. Eng,16,475-487.
  14. Mcanally, WH,Leter, JW,Tomas, WA(1986).Two and Three D Modeling Systems for Sedimentation.Proceedings of the 3rd Int. Symp. on River Sedimentation,U.S.A. Mississippi:
  15. Melville, BW(1975).School of Engineering University of Auckland.
  16. Melville, BW,Raudkivi, AJ(1977).Flow Characteristics in Local Scour at Bridge Piers.J. Hydraul. Res,15,373-380.
  17. Meyer-Peter E., Muller R., 1948, “Formulas for Bed-load Transport.” Pro. Int. Assoc. Hydraul. Struct, Res., Delft, 7 June 39-64.
  18. Michiue, M,Hinokidani, O(1992).Calculation of Two-Dimensional Bed Evolution around Spur-Dike.J. Hydraul. Eng,36,61-66.
  19. Nagagawa, H,Suzuki, K(1975).An Application of Stochastic Model of Sediment Motion to Local Scour around a Bridge Pier.Proceedings 16th International Association for Hydraulic Research Congress,Sao Paulo, Brazil:
  20. Olsen, NRB,Melaaen, MC(1993).Three-Dimensional Calcularion of Scour around Cylinders.J. Hydraul. Eng,119(9),1048-1054.
  21. Omara, H,Tawfik, A(2018).Numerical Study of Local Scour around Bridge Piers.Earth. Env. Sci,151(1),1-13.
  22. Oscar, L,Sebastian, H,Bernd, E(2018).Physical scale modelling of scour around bridge piers.J. Hydraul. Res,3,1-10.
  23. Salaheldin, TM,Jasim, Imran,Chaudhry, MH(2004).Numerical Modeling of Three-Dimensional Flow Field around Circular Piers.J. Hydraul. Eng,130,91-100.
  24. Shen, HW,Schneider, VR,Karaki, S(1969).Local Scour around Bridge Piers.J. Hydraul. Div,95,1919-1940.
  25. Shi, F,Xu, Z,Ma, CF(1993).A model of vortex viscosity coefficient in tensor form.J. Hydrodyn,8(2),206-211.
  26. Shuguang, Z,Jinbu, Y,Genguang, Z(2020)。Large-eddy simulation on local scour of cylindrical piers based on Flow-3d。Journal of Sediment Research,45(01),67-73。
  27. Soulsby, RL(1997).Dynamics of Marine Sands: A Manual for Practical Applications.London. UK:Thomas Telford Publications, Thomas Telford Services Ltd.
  28. Sung, UC,Byungwoong, C(2016).Prediction of Time-Dependent Local Scour around Bridge Piers.Water. Environ. J,30,14-21.
  29. VanRijn, C(1987).Delft hydraulics communication.
  30. VanRijn, LC(1984).Sediment Transport, Part I:Bed Load Transport.J. Hydraul. Eng,110(10),1431-1456.
  31. Wang, FJ(2004).Computational Fluid Dynamics Analysis-CFD Software Principle and Application.Beijing, China:Tsinghua University Press.
  32. Wang, XK,Zheng, J,Li, DX(2008).Modification of the Einstein Bed-Load Formula.J. Hydraul. Eng,134(9),1363-1369.
  33. Yasuyuki, Shimizu HY,Tadaoki, Itakura(1990).Three-Dimensional Computation of Flow and Bed Deformation.J. Hydraul. Eng,116(9),1090-1108.
  34. Zhao, W,Aode, H(2006).Large-Eddy Simulation of Three-Dimensional Turbulent Flow around a Circular Pier.J. Hydrodyn,18(6),765-772.