题名

Hydrodynamic Characteristics at the Confluence Zone of Jing River and Wei River

并列篇名

涇河與渭河交匯區水動力特性研究

DOI

10.6937/TWC.202212_70(4).0003

作者

XIA SHEN;SHENG LI;HAOTIAN ZHANG;XIAOYAN LIU;HAN GUO;XUEGUI ZHANG

关键词

Natural river confluence ; Numerical simulation ; Flow structure ; Turbulent kinetic energy ; Discharge ratio ; 天然河流交匯區 ; 數值模擬 ; 水流結構 ; 紊動能 ; 匯流比

期刊名称

台灣水利

卷期/出版年月

70卷4期(2022 / 12 / 01)

页次

22 - 39

内容语文

英文;繁體中文

中文摘要

River confluences are important nodes in the river network, and it is of great significance to clarify the flow characteristics of the river confluence for ecological environment protection. Previous studies on river confluences have mainly focused on confluence sinks and small natural river confluences. However, large natural river confluences with complex channel boundaries generally have extremely complex hydrodynamic characteristics that are difficult to clarify. In this study, the confluence zone of Jing River and Wei River (the most famous confluence in the Weihe Plain of northwest China) is selected as the research object, and the complex hydrodynamic characteristics of this asymmetrical large-scale confluence are investigated using two-dimensional numerical simulations. The results show that the confluence zone of the Jing River and Wei River is a typical curved mainstream type, which exhibits complex flow zoning characteristics due to its irregular channel profile and more central bars, and the confluence zone characteristics varied in different hydrological periods; with the increase of confluence ratio, the mainstream is strengthened by the supporting action of tributaries, the mainstream zone and the shear layer zone are close to the convex bank, and the velocity deviation zone increases; the turbulent kinetic energy in the confluence zone is distributed in a striped pattern, and the turbulent kinetic energy of the mainstream is about 10 times that of the tributaries; the turbulent kinetic energy in the confluence zone is larger in the mixing zone of the mainstream and tributaries, and in the compression zone squeezed by the central bars, while the turbulent kinetic energy in the circulation zone is lower. The results of this study can provide a scientific basis for the study of similar natural river confluences and are of great significance for the evolvement of the Weihe Basin in China and for water and ecological protection.

英文摘要

河流交匯區是組成河網水系的重要節點,明晰交匯區水流特徵對交匯區生態環境保護具有重大意義。以往對交匯區的研究對象主要為交匯水槽與小型天然河流交匯區。然而,具有複雜河道邊界的大型天然河流交匯區一般存在著極為複雜的水動力特徵難以明晰。本研究選取中國西北渭河平原最著名的涇河與渭河交匯區,通過二維數值模擬的方法研究了該非對稱大型交匯區複雜的水動力特性。結果表明:涇河與渭河交匯區屬於典型的彎曲幹流型交匯區,因其河岸輪廓不規則且江心洲較多的特點表現出複雜的水流分區特徵,且在不同水文時期的交匯區分區特徵存在明顯差異;隨著匯流比的增大,幹流受支流頂託作用加強,主流區和剪切層區向凸岸靠近,速度偏向區增大;交匯區紊動能較大區域呈條帶狀分佈,幹流的紊動能約為支流的10倍,交匯區干支流摻混區以及受江心洲擠壓的壓縮區紊動能較大,環流區的紊動能較小。本研究成果可為類似的天然河流交匯區研究提供科學依據,對中國渭河流域河道演變及水生態環境保護具有重要意義。

主题分类 工程學 > 水利工程
参考文献
  1. BEST, J.L.(1987).Flow dynamics at river channel confluences: implications for sediment transport and bed morphology.Special Publications,39,27-35.
  2. BEST, J.L.(1988).Sediment transport and bed morphology at river channel confluences.Sedimentology,35(3),481-498.
  3. Biron, P.(1993).Bed morphology and sedimentology at the confluence of unequal depth channels.Geomorphology,8(2-3),115-129.
  4. Bradbrook, K.F.(1998).Investigation of controls on secondary circulation in a simple confluence geometry using a three‐dimensional numerical model.Hydrological Processes,12(8),1371-1396.
  5. Chen, X.,Zhu, D.Z.,Steffler, P.M.(2017).econdary currents induced mixing at channel confluences.Canadian Journal of Civil Engineering,44(12),1071-1083.
  6. Constantinescu, G.,Koken, M.,Zeng, J.(2011).The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation.Water Resources Research,47(5),WO5515.1-WO5515.17.
  7. De Serres, B.(1999).Three-dimensional structure of flow at a confluence of river channels with discordant beds.Geomorphology,26(4),313-335.
  8. Feng, J.J.,Li, R.,Wang, X.K.(2009)。Study on characteristics of separation zone at river confluence。Chinese Journal of Hydrodynamics,24(3),320-325。
  9. Feng, Y.H.,Guo, W.D.(2006)。Numerical simulation of flow at Y-shaped open-channel junction。Hydro-Science and Engineering,2006(4),34-40。
  10. Feng, Y.H.,Guo, W.D.,Wang, X.G.(2007)。Helicity Analysis of Intersection Flow in Open Channel。Yangtze River,2007(1),119-121。
  11. Fernandes, C.C.,Podos, J.,Lundberg, J.G.(2004).Amazonian Ecology: Tributaries Enhance the Diversity of Electric Fishes.Science,305(5692),1960-1962.
  12. Gao, Y.S.,Ye, L.,Wang, Y.K.(2020)。3D Numerical Simulation of Flow Characteristics at Confluence Zone Between Shenxigou Stream and Baisha River。Advanced Engineering Sciences,52(2),78-85。
  13. Gualtieri, C.(2020).A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimões rivers, Brazil.Ecohydrology,13(1),1-16.
  14. Gualtieri, C.(2017).Hydraulic complexity at a large river confluence in the Amazon basin.Ecohydrology,10(7),1-12.
  15. Guillén-Ludeña, S.(2016).Evolution of the hydromorphodynamics of mountain river confluences for varying discharge ratios and junction angles.Geomorphology,255,1-15.
  16. Guo, W.D.,Liang, Y.,Feng, Y.H.(2007)。Numerical analysis of flow separation zone at junctions of Y-shaped open channels。Advances in Science and Technology of Water Resources,2007(6),49-52。
  17. Lin, Q.W.,Tang, H.W.,Yuan, S.Y.(2019)。Study on vortex structure at river confluence。Journal of Hohai University(Natural Sciences),47(4),352-358。
  18. Liu, S.Y.,Kang, P.,Li, R.(2012)。A numerical study on hydrodynamic characteristics of confluence flow。Advances in Science and Technology of Water Resources,32(4),14-18+22。
  19. Liu, T.H.,Guo, W.,Wang, X.K.(2007)。Experimental Study on Flow Structure in Intersection Area when Inlet Angle is 30。Journal of Yangtze River Scientific Research Institute,4,75-78。
  20. Liu, T.H.,Guo, W.,Zhan, L.(2009)。Experimental study of the velocity profile at 90° open channel confluence。Advances in water science,20(4),485-489。
  21. Mosley, M.P.(1976).An Experimental Study of Channel Confluences.The Journal of Geology,84(5),535-562.
  22. Paola, C.(1997).When streams collide.Nature: International weekly journal of science,387(6630),232-233.
  23. Parsons, D.R.,Best, J.L.,Lane, S.N.(2007).Form roughness and the absence of secondary flow in a large confluence-diffluence, Rio Paraná, Argentina.Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group,32(1),155-162.
  24. Penna, N.(2018).Effect of the Junction Angle on Turbulent Flow at a Hydraulic Confluence.Water,10(4),469-469.
  25. Ramamurthy, A.S.,Tran, D.M.,Carballada, L.B.(1994).Increased hydraulic resistance in combining open channel flows.Water Research,28(6),1505-1508.
  26. Rhoads, B.L.,Johnson, K.K.(2018).Three-dimensional flow structure, morphodynamics, suspended sediment, and thermal mixing at an asymmetrical river confluence of a straight tributary and curving main channel.Geomorphology,323,51-69.
  27. Rhoads, B.L.,Kenworthy, S.T.(1995).Flow structure at an asymmetrical stream confluence.Geomorphology,11(4),273-293.
  28. Rhoads, B.L.,Sukhodolov, A.N.(2004).Spatial and temporal structure of shear layer turbulence at a stream confluence.Water Resources Research,40(6),W06304.1-W06304.13.
  29. Rhoads, B.L.,Sukhodolov, A.N.(2008).Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface.Water Resources Research,44(8),552-568.
  30. Shakibainia, A.S.(2010).Three-dimensional numerical study of flow structure in channel confluences.Canadian Journal of Civil Engineering,37(5),772-781.
  31. Sukhodolov, A.N.,Schnauder, I.,Uijttewaal, W.S.J.(2010).Dynamics of shallow lateral shear layers: Experimental study in a river with a sandy bed.Water Resources Research,46(11),1-18.
  32. Sukhodolov, A.N.,Sukhodolova, T.A.(2019).Dynamics of Flow at Concordant Gravel Bed River Confluences: Effects of Junction Angle and Momentum Flux Ratio.Journal of Geophysical Research: Earth Surface,124(2),588-615.
  33. Szupiany, R.N.(2009).Morphology, flow structure, and suspended bed sediment transport at two large braid‐bar confluences.Water Resources Research,45(5),W05701.1-W05701.1.
  34. Tang, H.W.,Huang, S.J.,Yuan, S.Y.(2020)。Three-dimensional flow structure at the confluence zone of Yangtze River and Poyang Lake。Journal of Hohai University,48(2),128-135。
  35. Wang, X.K.,Wang, X.Y.,Lu, W.Z.(2006)。Experimental Study on Flow Structure at Open Channel Confluences。Advanced Engineering Sciences,38(2),1-5。
  36. Wang, X.K.,Zhou, S.F.,Ye, L.(2015)。Numerical simulation of confluence flow structure between Jialing River and Yangtze River。Advances in water science,26(3),372-377。
  37. Weerakoon, S.B.,Kawahara, Y.,Tamai, N(1991).Three-dimensional flow structure in channel confluences of rectangular section.Proceeding, 24th IAHR congress
  38. Wei, J.,Li, R.,Kang, P.(2012)。Transport and Diffusion Characteristics of Pollutants in Water Flow Intersection Area。Advances in Water Science,23(6),822-828。
  39. Wei, W.L.,Zhang, Z.W.,Shao, S.P.(2016)。Study of three-dimensional characteristics of flow at open-channel junctions by large eddy simulation。Engineering Jounal of Wuhan University,49(2),173-179+186。
  40. Xu, Z.X.,Zheng, Y.Y.,Guan, J.C.(2019)。Numerical Simulation of Flow Dynamic Characteristics at Confluence Region of Minjiang River in the Dujiangyan Reach。Advanced Engineering Sciences,51(3),59-66。
  41. Xue, B.S.,Wei, B.K.,Wang, F.(2019)。A comparative study of the influence of confluence ratio and tributary angle on flow state of an open channel。Chinses Journal of Applied Mechanics,36(3),658-665+762-763。
  42. Yuan, H.(2016)。,Nanjing:Hehai University。
  43. Yuan, S.Y.(2021).Hydrodynamics, Sediment Transport and Morphological Features at the Confluence Between the Yangtze River and the Poyang Lake.Water Resources Research,57(3),1-24.
  44. Yuan, S.Y.(2018).Water flow and sediment transport at open-channel confluences: an experimental study.Journal of Hydraulic Research,56(3),333-350.
  45. Yuan, S.Y.(2022).The dynamics of river confluences and their effects on the ecology of aquatic environment: A review.Journal of Hydrodynamics,34(1),1-14.
  46. Zhang, Q.,Wang, P.Y.,Liu, Q.Y.(2010)。Re-division of Confluence Patterns of Main Stream and Tributaries of River at Mountains Area。Journal of Chongqing Jiaotong University,29(3),458-460。
  47. Zhang, T.,Feng, M.Q.,Chen, K.L.(2020).Hydrodynamic characteristics and channel morphodynamics at a large asymmetrical confluence with a high sediment-load main channel.Geomorphology,356(C),107066-107066.