题名

人工水體施行生物控制水質管理法之應用研究:以台灣大學醉月湖為例

并列篇名

Research on the Application of Biomanipulation in Artificial Water Body: A Case Study on Drunken Moon Lake in National Taiwan University

DOI

10.6937/TWC.202303_71(1).0001

作者

陳以容(YI-RON CHEN);侯文祥(WEN-SHANG HOU);周楚洋(CHU-YANG CHOU)

关键词

人工水體 ; 台灣大學醉月湖 ; 生物控制水質管理法 ; 黑鰱 ; Artificial Water Body ; NTU Drunken Moon Lake ; Biomanipulation ; Bighead carp

期刊名称

台灣水利

卷期/出版年月

71卷1期(2023 / 03 / 01)

页次

1 - 11

内容语文

繁體中文;英文

中文摘要

生物控制水質管理法(Biomanipulation)是以人為方式改變魚類相的組成,再利用魚類的食性關係,控制浮游生物相的群聚結構,以達到水質淨化。濾食性魚類黑鰱(Hypophthalmichthys nobilis)由於濾食能力強、成長快速、且具高經濟食用魚類之特點,在國內外的湖泊與水庫大部分以鰱鱅魚類來達到減少藻類的目的。本研究於台大醉月湖放養黑鰱486尾,連續7年調查其成長變化與水質關係,記錄、分析黑鰱的成長率,結果顯示體重(W)與體長(L)成幕函數關係W = 4.23×10^(-2) L^(2.6059) (R^2 = 0.9555),成長規律採用Von - Bertalanffy生長方程式Lt = 103.1928(1-e^(-0.1835)(t+0.01283)))和Wt = 23451.41(1-e^(-0.1835(t+0.01283)))^(2.60)來擬合魚類成長。群體的生長轉折點t_i = 6,轉折點體重Wr = 1912.592 g,推算轉折點體長為Lr = 68.8 cm,結果顯示,轉折點年齡前體重增長速度為遞增階段,但遞增速度會逐漸下降;6齡時,體重增長速度為最大值,之後生長速度逐漸下降,約10齡時成長加速度降至最低點,個體開始進入衰老期。結果得知,利用黑鰱進行生物控制水質管理法來淨化台大醉月湖水質,應以養殖6年為期,即6年後應再補充新的魚苗,原有黑鰱則進行捕撈替換,如此可穩定水質,維持黑鰱攝食藻類的穩定性,成功地提高黑鰱在醉月湖的合理利用效益。

英文摘要

Biomanipulation is a water quality management practice in which the natural aquatic organisms are controlled by changing the composition of the fish phase artificially and then using the feeding relationship of the fish to control the cluster structure of the plankton phase so as to achieve water purification. Bighead carp (Hypophthalmichthys nobilis), a filter-feeding fish, have the filter-feeding ability and rapid growth, and are highly economical edible fish. Most of the lakes and reservoirs use silver carp and bighead carp to reduce phytoplankton biomass. In this study, 486 bighead carp were grazed in Drunken Moon Lake of NTU, and the relationship between their growth and water quality was investigated for seven consecutive years, and the growth rate of bighead carp was recorded and analyzed. The result indicated that the function relationship between body weight (W) and body length (L) was W = 4.23×10^(-2) L^(2.6059) (R^2 = 0.9555). Moreover, the growth model could be described by Von Bertalanffy equation as Lt = 103.1928(1-e^(-0.1835 (t+0.01283))) and Wt = 23451.41 (1-e^(-0.1835(t+0.01283)))^(2.60). The growth inflexion was t_i = 6 years, as the inflexion point of body weight and body length was Lr = 68.8 cm and Wr = 1912.592 g, respectively. The results showed that the weight growth rate before the inflexion point age is in an increasing stage, but the increasing speed will gradually decrease; at the age of 6, the growth rate of body weight reaches the maximum value, then the growth rate gradually decreases, and the growth rate drops to the lowest point at about 10 years old, and the individual begins to enter the aging period. In this paper, the bighead carp were stocked in the Drunken Moon Lake of National Taiwan University (NTU) by using the biomanipulation method to biologically control the water quality. During the experiment, the growth process of the bighead carp was monitored and calculated for a period of 6 years, i.e., new fry would be added after 6 years, and the original bighead carp were replaced by fishing. Experimental results showed the water quality and the filter-feeding phytoplankton of the bighead carp were able to be stably maintained and could enhance the rational utilization of the bighead carp in Drunken Moon Lake successfully.

主题分类 工程學 > 水利工程
参考文献
  1. Datta, S.,Jana, B. B.(1998).Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes.Journal of Fish Biology,53(1),12-24.
  2. Domaizon, I.,Dévaux, J.(1999).Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. Consequences for the use of silver carp in biomanipulation.Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie,322(7),621-628.
  3. Dong, S.L.,Li, D.S(1994).Comparative studies on the feeding selectivity of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis).J. Fish Biol.,44,621-626.
  4. Gophen, M.(1990).Biomanipulation: Retrospective and Future Development.Hydrobiologia,200/201,1-11.
  5. Hansson, L.‐A.,Annadotte, H.,Bergman, E.(1998).Minireview: Biomanipulation as an application of food‐chain theory: constraints, synthesis, and recommendations for temperate lakes.Ecosystems,1,558-574.
  6. Ivlev, V.S.(1961).Experimental Ecology of the Feeding of Fishes.New Haven:Yale University Press.
  7. Ke, Zhixin,Xie, Ping,Guo, Longgen,Liu, Yaqin,Yang, Hua(2007).In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: A large fish pen experiment.Aquaculture,265(1-4)
  8. Lieberman, D.M.(1996).Use of silver carp (Hypophthalmichthys molotrix) and bighead carp (Aristichthys nobilis) for algae control in a small pond: changes in water quality.Journal of Freshwater Ecology,11(4),391-397.
  9. Liu, J.K.(Ed.)(1990).Ecological Studies of Lake Donghu (1).Beijing:Science Press.
  10. Luis, Fernando(1993).Control of eutrophication by silver carp in the tropical Parano Reservioir (Brasilia, Brazil):a mesocosm experiment.Hydrobiologia,257,143-152.
  11. Martens, P.,Vandenbergh, J.G.(1979).Handbook of Behavioural Neurobiology.
  12. Miura, T.(1990).The effects of planktivorous fishes on the plankton community in a eutrophic lake.Hydrobiologia,200,567-579.
  13. Riedel-Lehrke, Melissa(1997).Biomanipulation: food web management of Lake ecosystems.Restoration and Reclamation Review,2(2)
  14. Shapiro, J.,Lamarra, V.,Lynch, M.(1975).Biomanipulation:an ecosystem approach to lake restoration.Proceedings of the symposium on water
  15. Smith, D. W.(1985).Biological control of excessive phytoplankton growth and the enhancement of aquacultural production.Canadian Journal of Fisheries and Aquatic Sciences,42(12),1940-1945.
  16. Starling, F. L. R. M.(1993).Control of eutrophication by silver carp in the tropical Pranoa Resevoir, Brazil: a mesocosm experiment.Hydrobiologia,257,143-151.
  17. Starling, F.,Lazzaro, X.,Cavalcanti, C.,Moreira, R.(2002).Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill.Freshwater Biology,47,2443-2452.
  18. Thomas, L. C.,John, R. B.(1990).Applicability of planktonic biomanipulation for managing eutrophication in the subtropics.Hydrobiologia,200/201,177-185.
  19. Tucker, C.S.(2006).Low‐density silver carp Hypophthalmichthys molitrix (Valenciennes) polyculture does not prevent cyanobacterial off‐flavours in channel catfish Ictalurus punctatus (Rafinesque).Aquaculture Research,37(3),209-214.
  20. Vörös, L.,Presing, L.O.M.,Balogh, K.V.(1997).Size selective filtration and taxonspecific digestion of plankton algae by silvercarp (Hypophthalmichthys molitrix Val).Hydrobiologia,342/343,223-228.
  21. Zhang, X.,Xie, P.,Hao, L.,Guo, N.,Gong, Y.,Hu, X.,Liang, G.(2006).Effects of the phytoplanktivorous silver carp (Hypophthalmichthys molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing.Aquaculture,257(1-4),173-186.
  22. 王晨光(2007)。台灣大學生物環境系統工程學研究所。
  23. 林懿蘋(2015)。台灣大學漁業科學學研究所。
  24. 許棖曜(2008)。台灣大學生物環境系統工程學研究所。
  25. 劉軒榮(2010)。台灣大學生物環境系統工程學研究所。