题名

管理看不見的水-人工智慧技術於臺灣地下水治理之能力建構

并列篇名

Managing Invisible Water: Artificial Intelligence-Based Technologies for Capacity Building of Groundwater Governance in Taiwan

DOI

10.6937/TWC.202306_71(2).0003

作者

黃浚瑋(CHUN-WEI HUANG);丘絲盈(SI YING YAU);鄭至傑(CHIH-CHIEH CHENG);倪春發(CHUEN-FA NI);張良正(LIANG-CHENG CHANG)

关键词

人工智慧 ; 電腦視覺 ; 地下水 ; 水源供給 ; 治理 ; Artificial intelligence ; Computer vision ; Groundwater ; Water supply ; Governance

期刊名称

台灣水利

卷期/出版年月

71卷2期(2023 / 06 / 01)

页次

28 - 39

内容语文

繁體中文;英文

中文摘要

放眼全球乃至臺灣,地下水為人類發展所需之重要水資源。然而,缺乏適當管理下,超抽地下水導致地層下陷、海水入侵乃至連結的河川系統枯竭等環境災害。本研究應用內容分析法(Content analysis)薈萃分析目前臺灣應用人工智慧技術於地下水管理相關之研究,進一步探討第三次人工智慧浪潮下,深度學習(Deep learning)對政府地下水治理(Groundwater governance)能力建構(Capacity building)提升之展望。本研究以深度學習電腦視覺如何協助納管巨量未受監管之私用抽水井作為說明,展示人工智慧技術於臺灣地下水管理正進階至深度學習時期,過去機器學習方法已可預測高複雜度而非線性之地下水位變化,但亦可能遭遇過度學習及低泛化能力(Low generalizability)等問題。傳統機器學習資料來源多為數字數據資料,深度學習技術進一步能透過擷取影像、語音及文字等大數據多樣之資料特徵,提升資訊技術以強化監管(Regulatory function)及財務(Fiscal function)等地下水行政管理職能之效益,展望當前人工智慧科技之演進,透過多模態機器學習(Multi-modal machine learning)整合多樣型態大數據資訊能有效提供未來政府地下水治理之能力建構。

英文摘要

From the world to Taiwan, groundwater is an important water resource that supports human development. However, the overdraft of groundwater due to a lack of appropriate management has led to environmental disasters, such as land subsidence, seawater invasion and depletion of rivers linked to the aquifer. This study synthesized the studies relevant to artificial intelligence (AI) technologies on groundwater management in Taiwan through a content analysis. We discuss the potential of deep learning to improve the capacity building of groundwater governance under the third wave of AI. We demonstrated that the deep learning-based computer vision technology could investigate and manage enormous unregulated private pumping wells. The case study revealed the evolution of AI applications in groundwater management, transitioning from machine learning to deep learning. While machine learning methods have shown its ability in predicting complex and nonlinear groundwater level changes, but they may also face the problems such as overtraining and low generalizability. Given the fact that traditional machine learning applications are limited to numerical data, deep learning-based approaches can capture important features from big data variety by incorporating images, videos, texts, etc. As such, deep learning technologies can facilitate regulatory and fiscal functions of groundwater administration via the improvement of information management functions. As AI continues to evolve, the multi-modal machine learning, which incorporates data diversity, can further improve groundwater governance.

主题分类 工程學 > 水利工程
参考文献
  1. 杜文苓,何俊頤(2015)。壟斷的環境資訊:解析高科技環境知識生產之制度困境。臺灣社會研究季刊,99,79-137。
    連結:
  2. Arrieta, A. B.,Díaz-Rodríguez, N.,Del Ser, J.,Bennetot, A.,Tabik, S.,Barbado, A.,Herrera, F.(2020).Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.Information fusion,58,82-115.
  3. Baltrušaitis, T.,Ahuja, C.,Morency, L. P.(2018).Multimodal machine learning: A survey and taxonomy.IEEE transactions on pattern analysis and machine intelligence,41(2),423-443.
  4. Chen, Y. A.,Chang, C. P.,Hung, W. C.,Yen, J. Y.,Lu, C. H.,Hwang, C.(2021).Space-time evolutions of land subsidence in the choushui river alluvial fan (Taiwan) from multiple-sensor observations.Remote Sensing,13(12),2281.
  5. Coulibaly, P.,Anctil, F.,Aravena, R.,Bobée, B.(2001).Artificial neural network modeling of water table depth fluctuations.Water resources research,37(4),885-896.
  6. De Luca, J.,Sinclair, D.(2020).Development of Groundwater Markets in Australia: Insights from Victoria in the Murray Darling Basin. Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries.
  7. Foster, S. D.,Hirata, R.,Howard, K. W.(2011).Groundwater use in developing cities: policy issues arising from current trends.Hydrogeology Journal,19(2),271-274.
  8. Goodfellow, I.,Pouget-Abadie, J.,Mirza, M.,Xu, B.,Warde-Farley, D.,Ozair, S.,Bengio, Y.(2020).Generative adversarial networks.Communications of the ACM,63(11),139-144.
  9. Goodfellow, I.,Pouget-Abadie, J.,Mirza, M.,Xu, B.,Warde-Farley, D.,Ozair, S.,Bengio, Y.(2014).Generative adversarial nets.Advances in neural information processing systems,27
  10. Goodfellow, I,Bengio, Yoshua,Courville, Aaron(2016).Deep learning.MIT press.
  11. Gorelick, S. M.,Zheng, C.(2015).Global change and the groundwater management challenge.Water Resources Research,51(5),3031-3051.
  12. Hinton, G. E.,Osindero, S.,Teh, Y. W.(2006).A fast learning algorithm for deep belief nets.Neural computation,18(7),1527-1554.
  13. Hochreiter, S.,Schmidhuber, J.(1997).Long short-term memory.Neural computation,9(8),1735-1780.
  14. Huang, C. W.,McDonald, R. I.,Seto, K. C.(2018).The importance of land governance for biodiversity conservation in an era of global urban expansion.Landscape and Urban Planning,173,44-50.
  15. Huang, C. W.,Yau, S. Y.,Kuo, C. L.,Lin, Y. S.,Kuan, T. Y.,Lin, S. Y.,Tsou, C. S.,Ni, C. F.,Chang, L. C.(2023).Identifying private pumping wells in a land subsidence area using deep learning technology and street view images.Advance in Water Resources
  16. Kemper, K. E.(2007).Instruments and institutions for groundwater management.The agricultural groundwater revolution: Opportunities and threats to development
  17. Krizhevsky, A.,Sutskever, I.,Hinton, G. E.(2012).Imagenet classification with deep convolutional neural networks.Advances in neural information processing systems
  18. LeCun, Y.,Bengio, Y.,Hinton, G.(2015).Deep learning.nature,521(7553),436-444.
  19. Margetts, H.,Dorobantu, C.(2019).Rethink government with AI.Nature,568
  20. Medina, M. A., Jr,Jacobs, T. L.,Lin, W.,Lin, K. C.(1996).Ground water solute transport, optimal remediation planning, and decision making under uncertainty.JAWRA Journal of the American Water Resources Association,32(1),1-12.
  21. Megdal, S. B.(2018).Invisible water: the importance of good groundwater governance and management.NPJ Clean Water,1(1),15.
  22. Rajaee, T.,Boroumand, A.(2015).Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models.Applied Ocean Research,53,208-217.
  23. Rajaee, T.,Ebrahimi, H.,Nourani, V.(2019).A review of the artificial intelligence methods in groundwater level modeling.Journal of hydrology,572,336-351.
  24. Reich, Y.,Medina, M. A., Jr,Shieh, T. Y.,Jacobs, T. L.(1996).Modeling and debugging engineering decision procedures with machine learning.Journal of computing in civil engineering,10(2),157-166.
  25. Ronayne, M. J.,Roudebush, J. A.,Stednick, J. D.(2017).Analysis of managed aquifer recharge for retiming streamflow in an alluvial river.Journal of hydrology,544,373-382.
  26. Sharples, J.,Carrara, E.,Preece, L.,Chery, L.,Lopez, B.,Rinaudo, J. D.(2020).Information systems for sustainable management of groundwater extraction in France and Australia.Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries
  27. Shih, D. S.,Chen, C. J.,Li, M. H.,Jang, C. S.,Chang, C. M.,Liao, Y. Y.(2019).Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan.Water,11(2),360.
  28. Steudler, D.,Rajabifard, A.,Williamson, I. P.(2004).Evaluation of land administration systems.Land use policy,21(4),371-380.
  29. Theesfeld, I.(2010).Institutional challenges for national groundwater governance: Policies and issues.Groundwater,48(1),131-142.
  30. Yousif, M.,van Geldern, R.,Bubenzer, O.(2016).Hydrogeological investigation of shallow aquifers in an arid data-scarce coastal region (El Daba'a, northwestern Egypt).Hydrogeology journal,24(1),159.
  31. 中華經濟研究院(2014)。,國家發展委員會。
  32. 行政院經濟部水利署(2020).地下水保育管理暨地層下陷防治第3期計畫(110~114年)核定本.台北:行政院經濟部水利署.
  33. 行政院經濟部水利署(2015).地下水保育管理暨地層下陷防治第2期計畫(104~109年)核定本.台北:行政院經濟部水利署.
  34. 何俊頤(2020)。國立臺灣大學建築與城鄉研究所。
  35. 余化龍(2020)。,行政院經濟部水利規劃實驗所。
  36. 呂濬(2020)。國立成功大學水利及海洋工程研究所。
  37. 林月合(2020)。國立中正大學地球與環境科學研究所。
  38. 林永清(2017)。國立中央大學土木工程研究所。
  39. 林均祥(2021)。國立中正大學地球與環境科學研究所。
  40. 林思妤(2020)。國立交通大學土木工程研究所。
  41. 邱鈺智(2021)。國立中央大學土木工程研究所。
  42. 胡宇成(2021)。國立臺灣海洋大學資訊工程研究所。
  43. 時于凱(2021)。國立中央大學資訊工程研究所。
  44. 翁采寧(2020)。國立中央大學土木工程研究所。
  45. 財團法人成大研究發展基金會(2007)。,台北:行政院經濟部水利署。
  46. 國立成功大學(2019).應用地層下陷監測巨量資料進行下陷趨勢探討.台北:行政院經濟部水利署.
  47. 國立臺灣大學(2013)。,行政院經濟部水利署。
  48. 國立臺灣大學(2018).氣候變遷下水環境跨領域動態策略技術評析與規劃.台北:行政院經濟部水利署.
  49. 國立臺灣大學(2018)。,台北:行政院經濟部水利署水利規劃試驗所。
  50. 張孝龍(2002)。國立交通大學土木工程研究所。
  51. 張陽郎(2018)。,行政院國家科學及技術委員會。
  52. 許智翔(2017)。國立交通大學土木工程研究所。
  53. 陳子裕(2016)。國立臺灣大學土木工程研究所。
  54. 陳宇文(1999)。國立交通大學土木工程研究所。
  55. 陳宇玟(2018)。國立中正大學地球與環境科學研究所。
  56. 陳祐誠(2019)。國立交通大學土木工程研究所。
  57. 黃上竹(2013)。國立嘉義大學土木與水資源工程研究所。
  58. 黃芹濰(2020)。國立交通大學土木工程研究所。
  59. 黃浚瑋(2022)。,行政院國家科學及技術委員會。
  60. 黃浚瑋(2021)。,行政院國家科學及技術委員會。
  61. 黃浚瑋(2005)。國立交通大學土木工程研究所。
  62. 蔡瑞彬(2021)。,行政院國家科學及技術委員會。
  63. 謝尚如(2016)。國立宜蘭大學環境工程研究所。
  64. 謝勝信(2020)。國立屏東科技大學土木工程研究所。
  65. 嚴先瑾(2021)。朝陽科技大學環境工程與管理研究所。