题名

Using Sentinel-l & 2 Data to Estimate Spatial Distribution of Soil Moisture - A Case Study of Piliao Area in Taoyuan

并列篇名

利用Sentinel-1 & 2遙測資料推估土壤含水量空間分布-以桃園皮寮地區為例

DOI

10.6937/TWC.202306_71(2).0005

作者

JING-EN XIAO;KAM-LON CHAN;HUA-TING TSENG;SHIH-YAO LEE;HWA-LUNG YU

关键词

Soil moisture ; synthetic aperture radar ; remote sensing ; water-cloud model

期刊名称

台灣水利

卷期/出版年月

71卷2期(2023 / 06 / 01)

页次

55 - 70

内容语文

英文;繁體中文

中文摘要

Soil moisture is one of the significant variables in the fields of meteorological, hydrologic, and agriculture applications. This article utilizes the SENTINEL-1 SAR (synthetic aperture radar) and SENTINEL-2 multispectral satellite data to evaluate the spatial and temporal soil moisture distribution in the Piliao area. This study employs the water cloud model to distinguish the backscattering coefficient from the effects of soil moisture and vegetation coverage, and to estimate soil moisture. Furthermore, the integration of artificial neural network and a radiative transfer model, i.e., PROSAIL, was used to extract the vegetation related parameters for the water cloud model, i.e., LAI and canopy water content. Results show that the r-square value between radar backscattering coefficient and soil moisture increased from 0.33 to 0.53 with considering the vegetation coverage effect. The spatial estimation of soil moisture in Piliao area was conducted at selected times. It shows that soil moisture is related to crop types and their growth periods, which is identified by comparing LAI and soil moisture estimation. Our results can serve as a useful reference for irrigation water management in the study area.

主题分类 工程學 > 水利工程
参考文献
  1. Babaeian, E.,Sadeghi, M.,Jones, S.B.,Montzka, C.,Vereecken, H.,Tuller, M.(2019).Ground, proximal and satellite remote sensing of soil moisture.Rev. Geophys,57,530-616.
  2. Bindlish, R.,Barros, A.P.(2001).Parameterization of vegetation backscatter in radar-based, soil moisture estimation.Remote Sens. Environ,76,130-137.
  3. Bouras, E.H.,Jarlan, L.,Er-Raki, S.,Balaghi, R.,Amazirh, A.,Richard B.,Khabba, S.(2021).Cereal yield forecasting with satellite drought-based indices, weather data and regional climate indices using machine learning in Morocco.Remote Sens,13,3101.
  4. Bradford, J.B.,Schlaepfer, D.R.,Lauenroth, W.K.,Palmquist, K.A.,Chambers, J.C.,Maestas, J.D.,Campbell, S.B.(2019).Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance.Front. Ecol. Evol,7
  5. Brocca, L.,Ciabatta, L.,Massari, C.,Camici, S.,Tarpanelli, A.(2017).Soil moisture for hydrological applications: open questions and new opportunities.Water,9
  6. Brocca, L.,Ponziani, F.,Moramarco, T.,Melone, F.,Berni, N.,Wagner, W.(2012).Improving landslide forecasting using ASCAT-derived soil moisture data: a case study of the Torgiovannetto landslide in central Italy.Remote Sens,4,1232-1244.
  7. Brown, S.C.M.,Quegan, S.,Morrison, K.,Bennett, J.C.,Cookmartin, G.(2003).High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval.IEEE Trans. Geosci. Remote Sens,41,1602-1610.
  8. Casagli, N.,Cigna, F.,Bianchini, S.,Hölbling, D.,Füreder, P.,Righini, G.,Conte, S.D.,Friedl, B.,Schneiderbauer, S.,Iasio, C.,Vlcko, J.,Greif, V.,Proske, H.,Granica, K.,Falco, S.,Lozzi, S.,Mora,O.,Arnaud, A.,Novali, F.,Bianchi, M.(2016).Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER.Remote Sens. Appl.: Soc. Environ.,4,92-108.
  9. Davesne, G.,Domine, F.,Fortier, D.(2021).Effects of meteorology and soil moisture on the spatio-temporal evolution of the depth hoar layer in the polar desert snowpack.J. Glaciol,1-16.
  10. Dobson, M.C.,Ulaby, F.T.(1986).Preliminaly evaluation of the SIR-B response to soil moisture, surface roughness, and crop canopy cover.IEEE Trans. Geosci. Remote Sens.,4,517-526.
  11. Dong, J.,Crow, W.T.,Tobin, K.J.,Cosh, M.H.,Bosch, D.D.,Starks, P.J.,MarkSeyfried, M.,Collins, C.H.(2020).Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation.Remote Sens. Environ,242,111756.
  12. Foucras, M.,Zribi, M.,Albergel, C.,Baghdadi, N.,Calvet, J.C.,Pellarin, T.(2020).Estimating 500-m resolution soil moisture using Sentinel-1 and optical data synergy.Water,12,866.
  13. Gathorne-Hardy, A.,Reddy, D.N.,Venkatanarayana, M.,Harriss-White, B.(2016).System of rice intensification provides environmental and economic gains but at the expense of social sustainability - a multidisciplinary analysis in India.Agricultural Systems,143,159-168.
  14. Gong, Y.,Cao, Q.,Sun, Z.(2003).The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry.Hydrol. Process,17,3601-3614.
  15. Han, D.,Vahedifard, F.,Aanstoos, J.V.(2017).Investigating the correlation between radar backscatter and in situ soil property measurements.International Journal of Applied Earth Observation and Geoinformation,57,136-144.
  16. Huisman, J.A.,Sperl, C.,Bouten, W.,Verstraten, J.M.(2001).Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar.J. Hydrol,245,48-58.
  17. Humphrey, V.,Berg, A.,Ciais, P.,Gentine, P.,Jung, M.,Reichstein, M.,Seneviratne, S.I.,Frankenberg, C.(2021).Soil moisture–atmosphere feedback dominates land carbon uptake variability.Nature,592,65-69.
  18. Jacquemoud, S.,Baret, F.(1990).PROSPECT: a model of leaf optical properties spectra.Remote Sens. Environ,34,75-91.
  19. Jacquemoud, S.,Verhoef, W.,Baret, F.,Bacour, C.,Zarco-Tejada, P.J.,Asner, G.P.,François, C.,Ustin, S.L.(2009).PROSPECT+ SAIL models: a review of use for vegetation characterization.Remote Sens. Environ,113,S56-S66.
  20. Jalilvand, E.,Tajrishy, M.,Ghazi Zadeh Hashemi, S.A.,Brocca, L.(2019).Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region.Remote Sens. Environ.,231,111226.
  21. Kelly, T.D.,Foster, T.,Schultz, D.M.,Mieno, T.(2021).the effect of soil-moisture uncertainty on irrigation water use and farm profits.Adv Water Resour,154,103982.
  22. Kganyago, M.,Mhangara, P.,Alexandridis, T.,Laneve, G.,Ovakoglou, G.,Mashiyi, N.(2020).Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape.Remote Sens. Lett.,11,883-892.
  23. Kornelsen, K.C.,Coulibaly, P.(2013).Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications.J. Hydrol,476,460-489.
  24. Koyama, C.N.,Liu, H.,Takahashi, K.,Shimada, M.,Watanabe, M.,Khuut, T.,Sato, M.(2017).In-situ measurement of soil permittivity at various depths for the calibration and validation of low-frequency SAR soil moisture models by using GPR.Remote Sens,9,580.
  25. Lee, C.S.,Sohn, E.,Park, J.D.,Jang, J.D.(2018).Estimation of soil moisture using deep learning based on satellite data: a case study of South Korea.GIScience remote sens.,1-25.
  26. Li, Y.,Zhang, C.,Heng, W.(2021).Retrieving surface soil moisture over wheat-covered areas using data from Sentinel-1 and Sentinel-2.Water,13,1981.
  27. Liu, L.,Gudmundsson, L.,Hauser, M.,Qin, D.,Li, S.,Seneviratne, S.I.(2020).Soil moisture dominates dryness stress on ecosystem production globally.Nat. Commun,11,4892.
  28. Ma, T.,Han, L.,Liu, Q.(2021).Retrieving the soil moisture in bare farmland areas using a modified Dubois model.Front. Earth Sci,9,735958.
  29. Main-Knorn, M.,Pflug, B.,Louis, J.,Debaecker, V.,Müller-Wilm, U.,Gascon, F.(2017).Sen2Cor for sentinel-2.Image and Signal Processing for Remote Sensing XXIII,Warsaw, Poland:
  30. Majdar, H.A.,Vafakhah, M.,Sharifikia, M.,Ghorbani, A.(2018).Spatial and temporal variability of soil moisture in relation with topographic and meteorological factors in south of Ardabil Province, Iran.Environ. Monit. Assess,190
  31. Markham, B.,James, S.,Morfitt, R.(2015).Landsat-8 Sensor Characterization and Calibration.Remote Sens,7,2279-2282.
  32. Mascaro, G.,Ko, A.,Vivoni, E.R.(2019).Closing the loop of satellite soil moisture estimation via scale invariance of hydrologic simulations.Sci. Rep.,9,16123.
  33. Mohamed, E.S,Ali, A.,El-Shirbeny, M.,Abutaleb, K.,Shaddad, S.M.(2019).Mapping soil moisture and their correlation with crop pattern using remotely sensed data in arid region.Egypt. J. Remote Sens. Space Sci,23,347-353.
  34. Patel, P.,Srivastava, H.S.,Panigrahy, S.,Parihar, J.S.(2006).Comparative evaluation of the sensitivity of multipolarized multi-frequency SAR backscatter to plant density.Int. J. Remote Sens,27,293-305.
  35. Peng, J.,Loew, A.(2017).Recent advances in soil moisture estimation from remote sensing.Water,9,530.
  36. Richter, R.,Louis, J.,Müller-Wilm, U.(2012).ESA ReportESA Report,Darmstadt, Germany:Telespazio VEGA Deutschland GmbH.
  37. Ridwan, M.A.,Radzi, N.A.M.,Ahmad, W.S.H.M.W.,Mustafa, I.S.,Din, N.M.,Jalil, Y.E.,Isa, A.M.,Othman, N.S.,Zaki, W.M.D.W.(2018).Applications of Landsat-8 data: a survey.J. Eng. Technol,7,436.
  38. Robinson, D.A.,Campbell, C.S.,Hopmans, J.W.,Hornbuckle, B.K.,Jones, S.B.,Knight, R.,Ogden, F.,Selker, J.,Wendroth, O.(2008).Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review.Vadose Zone J,7,358-389.
  39. Shah, T.M.,Tasawwar, S.,Bhat, M.A.,Otterpohl, R.(2021).Intercropping in rice farming under the system of rice Intensification-an agroecological strategy for weed control, better yield, increased returns, and social-ecological sustainability.Agronomy,11,1010.
  40. Sharif, H.E.,Wang, J.F,Georgakakos, A.P.(2015).Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data.J. Hydrometeorol,16,904-916.
  41. Sheffield, J.,Wood, E.F.,Pan, M.,Beck, H.,Coccia, G.,Serrat-Capdevila, A.,Verbist, K.(2018).Satellite remote sensing for water resources management - potential for supporting sustainable development in data poor regions.Water Resour. Res,54,9724-9758.
  42. Toan, T.L.,Ribbes, F.,Wang, L.F.,Floury, N.,Ding, K.H.,Kong, J.A.,Fujita, M.,Kurosu, T.(1997).Rice crop mapping andmonitoring using ERS-1 data based on experiment and modeling results.IEEE Trans. Geosci. Remote Sens,35,41-56.
  43. Tripathi, A.,Tiwari, R.K(2020).Synergetic utilization of Sentinel-1 SAR and Sentinel-2 optical remote sensing data for surface soil moisture estimation for Rupnagar, Punjab, India.Geocarto Int.,1-21.
  44. Ulaby F.T.,Batlivala P.P.,Dobson M.C.(1978).Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part i-bare soil.IEEE Trans. Geosci. Electron,16,286-295.
  45. Verhoef, W.(1984).Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model.Remote Sens. Environ,16,125-141.
  46. Walker, J.P.,Willgoose, G.R.,Kalma, J.D.(2004).In situ measurement of soil moisture: a comparison of techniques.J. Hydrol,2004,85-99.
  47. Wang, L.,Qu, J.J.(2009).Satellite remote sensing applications for surface soil moisture monitoring: A review.Front. Earth Sci. China,3,237-247.
  48. Wang, Y.,Leng, P.,Ma, J.,Peng, J.(2021).A method for downscaling satellite soil moisture based on land surface temperature and net surface shortwave radiation.IEEE Geosci. Remote. Sens. Lett,1-5.
  49. Weiss, M.,Baret, F.(2016).,Avignon:Institut National de la Recherche Agronomique=INRA.
  50. White, J.,Berg, A.A.,Champagne, C.,Zhang, Y.,Chipanshi, A.,Daneshfar, B.(2020).Improving crop yield forecasts with satellite-based soil moisture estimates: An example for township level canola yield forecasts over the Canadian Prairies.Int. J. Appl. Earth Obs. Geoinf,89,102092.
  51. Wright, A.J.,Walker, J.P.,Pauwels, V.R.N.(2018).Identification of hydrologic models, optimized parameters, and rainfall inputs consistent with in situ streamflow and rainfall and remotely sensed soil moisture.J. Hydrometeorol,19,1305-1320.
  52. Yin, J.,Shen, R.,Meng, Q.,Xu, H.,Wang, H.(2018).Satellite soil moisture and its applications.Adv. Meteorol,2018,1-2.
  53. Yu, X.,Drnevich, V.P.(2004).Soil water content and dry density by time domain reflectometry.J. Geotech. Geoenviron. Eng,130,922-934.
  54. Zakharov, I.,Kapfer, M.,Hornung, J.,Kohlsmith, S.,Puestow, T.,Howell, M.,Henschel, M.D.(2020).Retrieval of surface soil moisture from Sentinel-1 time series for reclamation of wetland sites.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,13,3569-3578.
  55. Zhang, D.,Zhou, G.(2016).Estimation of soil moisture from optical and thermal remote sensing: a review.Sensors,16,1308.
  56. Zhuo, L.,Dai, Q.,Han, D.,Chen, N.,Zhao, B.,Berti, M.(2019).Evaluation of remotely sensed soil moisture for landslide hazard assessment.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,12,162-173.
  57. Zhuo, L.,Han, D.(2016).The relevance of soil moisture by remote sensing and hydrological modelling.Procedia Eng,154,1368-1375.